These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26807040)

  • 1. A study of snake-like locomotion through the analysis of a flexible robot model.
    Cicconofri G; DeSimone A
    Proc Math Phys Eng Sci; 2015 Dec; 471(2184):20150054. PubMed ID: 26807040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soft Rod-Climbing Robot Inspired by Winding Locomotion of Snake.
    Liao B; Zang H; Chen M; Wang Y; Lang X; Zhu N; Yang Z; Yi Y
    Soft Robot; 2020 Aug; 7(4):500-511. PubMed ID: 31986109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot.
    Onal CD; Rus D
    Bioinspir Biomim; 2013 Jun; 8(2):026003. PubMed ID: 23524383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired 3D-Printed Snakeskins Enable Effective Serpentine Locomotion of a Soft Robotic Snake.
    Qi X; Gao T; Tan X
    Soft Robot; 2023 Jun; 10(3):568-579. PubMed ID: 36454198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limbless undulatory propulsion on land.
    Guo ZV; Mahadevan L
    Proc Natl Acad Sci U S A; 2008 Mar; 105(9):3179-84. PubMed ID: 18308928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pacific lamprey inspired climbing.
    Van Stratum B; Shoele K; Clark JE
    Bioinspir Biomim; 2023 May; 18(4):. PubMed ID: 37196650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral Oscillation and Body Compliance Help Snakes and Snake Robots Stably Traverse Large, Smooth Obstacles.
    Fu Q; Gart SW; Mitchel TW; Kim JS; Chirikjian GS; Li C
    Integr Comp Biol; 2020 Jul; 60(1):171-179. PubMed ID: 32215569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Planar maneuvering control of underwater snake robots using virtual holonomic constraints.
    Kohl AM; Kelasidi E; Mohammadi A; Maggiore M; Pettersen KY
    Bioinspir Biomim; 2016 Nov; 11(6):065005. PubMed ID: 27882895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On Planar Discrete Elastic Rod Models for the Locomotion of Soft Robots.
    Goldberg NN; Huang X; Majidi C; Novelia A; O'Reilly OM; Paley DA; Scott WL
    Soft Robot; 2019 Oct; 6(5):595-610. PubMed ID: 31112073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bioinspired fishbone continuum robot with rigid-flexible-soft coupling structure.
    Zhou P; Yao J; Zhang S; Wei C; Zhang H; Qi S
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 35998612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motion Planning and Iterative Learning Control of a Modular Soft Robotic Snake.
    Luo M; Wan Z; Sun Y; Skorina EH; Tao W; Chen F; Gopalka L; Yang H; Onal CD
    Front Robot AI; 2020; 7():599242. PubMed ID: 33501359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding Decentralized Control Mechanism Underlying Adaptive and Versatile Locomotion of Snakes.
    Kano T; Ishiguro A
    Integr Comp Biol; 2020 Jul; 60(1):232-247. PubMed ID: 32215573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Fully Three-Dimensional Printed Inchworm-Inspired Soft Robot with Magnetic Actuation.
    Joyee EB; Pan Y
    Soft Robot; 2019 Jun; 6(3):333-345. PubMed ID: 30720388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical intelligence simplifies control in terrestrial limbless locomotion.
    Wang T; Pierce C; Kojouharov V; Chong B; Diaz K; Lu H; Goldman DI
    Sci Robot; 2023 Dec; 8(85):eadi2243. PubMed ID: 38117866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Architectures of soft robotic locomotion enabled by simple mechanical principles.
    Zhu L; Cao Y; Liu Y; Yang Z; Chen X
    Soft Matter; 2017 Jun; 13(25):4441-4456. PubMed ID: 28632275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EuMoBot: replicating euglenoid movement in a soft robot.
    Digumarti KM; Conn AT; Rossiter J
    J R Soc Interface; 2018 Nov; 15(148):. PubMed ID: 30464056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous body 3-D reconstruction of limbless animals.
    Fu Q; Mitchel TW; Kim JS; Chirikjian GS; Li C
    J Exp Biol; 2021 Mar; 224(Pt 6):. PubMed ID: 33536306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-iterative geometric approach for inverse kinematics of redundant lead-module in a radiosurgical snake-like robot.
    Omisore OM; Han S; Ren L; Zhang N; Ivanov K; Elazab A; Wang L
    Biomed Eng Online; 2017 Aug; 16(1):93. PubMed ID: 28764713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards the optimization of passive undulatory locomotion on land: mathematical and physical models.
    Yaqoob B; Dottore ED; Mondini A; Rodella A; Mazzolai B; Pugno NM
    J R Soc Interface; 2023 Aug; 20(205):20230330. PubMed ID: 37553994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.