These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26807040)

  • 21. Design, Analysis, and Real-Time Simulation of a 3D Soft Robotic Snake.
    Wan Z; Sun Y; Qin Y; Skorina EH; Gasoto R; Luo M; Fu J; Onal CD
    Soft Robot; 2023 Apr; 10(2):258-268. PubMed ID: 35976088
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Serpentine locomotion through elastic energy release.
    Dal Corso F; Misseroni D; Pugno NM; Movchan AB; Movchan NV; Bigoni D
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28566512
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamical analysis and development of a biologically inspired SMA caterpillar robot.
    Daily-Diamond CA; Novelia A; O'Reilly OM
    Bioinspir Biomim; 2017 Sep; 12(5):056005. PubMed ID: 28782735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioinspired legged-robot based on large deformation of flexible skeleton.
    Mayyas M
    Bioinspir Biomim; 2014 Nov; 9(4):046013. PubMed ID: 25387137
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Snakes combine vertical and lateral bending to traverse uneven terrain.
    Fu Q; Astley HC; Li C
    Bioinspir Biomim; 2022 Apr; 17(3):. PubMed ID: 35235918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Turning in Worm-Like Robots: The Geometry of Slip Elimination Suggests Nonperiodic Waves.
    Kandhari A; Wang Y; Chiel HJ; Daltorio KA
    Soft Robot; 2019 Aug; 6(4):560-577. PubMed ID: 31066633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot.
    Bing Z; Cheng L; Chen G; Röhrbein F; Huang K; Knoll A
    Bioinspir Biomim; 2017 Apr; 12(3):035001. PubMed ID: 28375848
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitigating memory effects during undulatory locomotion on hysteretic materials.
    Schiebel PE; Astley HC; Rieser JM; Agarwal S; Hubicki C; Hubbard AM; Diaz K; Mendelson Iii JR; Kamrin K; Goldman DI
    Elife; 2020 Jun; 9():. PubMed ID: 32578532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spinal Helical Actuation Patterns for Locomotion in Soft Robots.
    Case JC; Gibert J; Booth J; SunSpiral V; Kramer-Bottiglio R
    IEEE Robot Autom Lett; 2020 Jul; 5(3):3814-3821. PubMed ID: 33088914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Smooth transition for CPG-based body shape control of a snake-like robot.
    Nor NM; Ma S
    Bioinspir Biomim; 2014 Mar; 9(1):016003. PubMed ID: 24343201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Reinforcement Learning-Based Strategy of Path Following for Snake Robots with an Onboard Camera.
    Liu L; Guo X; Fang Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Path following control of planar snake robots using virtual holonomic constraints: theory and experiments.
    Rezapour E; Pettersen KY; Liljebäck P; Gravdahl JT; Kelasidi E
    Robotics Biomim; 2014; 1(1):3. PubMed ID: 26613075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model.
    Jusufi A; Vogt DM; Wood RJ; Lauder GV
    Soft Robot; 2017 Sep; 4(3):202-210. PubMed ID: 29182079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles.
    Tawk C; In Het Panhuis M; Spinks GM; Alici G
    Soft Robot; 2018 Dec; 5(6):685-694. PubMed ID: 30040042
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shape memory alloy-driven undulatory locomotion of a soft biomimetic ray robot.
    Kim HS; Heo JK; Choi IG; Ahn SH; Chu WS
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34020436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sidewinding with minimal slip: snake and robot ascent of sandy slopes.
    Marvi H; Gong C; Gravish N; Astley H; Travers M; Hatton RL; Mendelson JR; Choset H; Hu DL; Goldman DI
    Science; 2014 Oct; 346(6206):224-9. PubMed ID: 25301625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tegotae-based decentralised control scheme for autonomous gait transition of snake-like robots.
    Kano T; Yoshizawa R; Ishiguro A
    Bioinspir Biomim; 2017 Aug; 12(4):046009. PubMed ID: 28581439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Yoshimura-origami Based Earthworm-like Robot With 3-dimensional Locomotion Capability.
    Zhang Q; Fang H; Xu J
    Front Robot AI; 2021; 8():738214. PubMed ID: 34490358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient sliding locomotion with isotropic friction.
    Alben S
    Phys Rev E; 2019 Jun; 99(6-1):062402. PubMed ID: 31330739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Locomotory transition from water to sand and its effects on undulatory kinematics in sand lances (Ammodytidae).
    Gidmark NJ; Strother JA; Horton JM; Summers AP; Brainerd EL
    J Exp Biol; 2011 Feb; 214(Pt 4):657-64. PubMed ID: 21270315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.