BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 2680756)

  • 1. Pachytene arrest and other meiotic effects of the start mutations in Saccharomyces cerevisiae.
    Shuster EO; Byers B
    Genetics; 1989 Sep; 123(1):29-43. PubMed ID: 2680756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diploid spore formation and other meiotic effects of two cell-division-cycle mutations of Saccharomyces cerevisiae.
    Schild D; Byers B
    Genetics; 1980 Dec; 96(4):859-76. PubMed ID: 7021319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible pachytene arrest of Saccharomyces cerevisiae at elevated temperature.
    Byers B; Goetsch L
    Mol Gen Genet; 1982; 187(1):47-53. PubMed ID: 6761544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meiotic effects of DNA-defective cell division cycle mutations of Saccharomyces cerevisiae.
    Schild D; Byers B
    Chromosoma; 1978 Dec; 70(1):109-30. PubMed ID: 367734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saccharomyces cerevisiae cells lacking the homologous pairing protein p175SEP1 arrest at pachytene during meiotic prophase.
    Bähler J; Hagens G; Holzinger G; Scherthan H; Heyer WD
    Chromosoma; 1994 Apr; 103(2):129-41. PubMed ID: 8055710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations in cell division cycle genes CDC36 and CDC39 activate the Saccharomyces cerevisiae mating pheromone response pathway.
    de Barros Lopes M; Ho JY; Reed SI
    Mol Cell Biol; 1990 Jun; 10(6):2966-72. PubMed ID: 2111445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spo1, a phospholipase B homolog, is required for spindle pole body duplication during meiosis in Saccharomyces cerevisiae.
    Tevzadze GG; Swift H; Esposito RE
    Chromosoma; 2000; 109(1-2):72-85. PubMed ID: 10855497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic control of chromosome synapsis in yeast meiosis.
    Giroux CN; Dresser ME; Tiano HF
    Genome; 1989; 31(1):88-94. PubMed ID: 2687110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutritional regulation of late meiotic events in Saccharomyces cerevisiae through a pathway distinct from initiation.
    Lee RH; Honigberg SM
    Mol Cell Biol; 1996 Jun; 16(6):3222-32. PubMed ID: 8649433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cdc28 and Ime2 possess redundant functions in promoting entry into premeiotic DNA replication in Saccharomyces cerevisiae.
    Guttmann-Raviv N; Boger-Nadjar E; Edri I; Kassir Y
    Genetics; 2001 Dec; 159(4):1547-58. PubMed ID: 11779796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and transcriptional characterization of three genes which function at start, the controlling event of the Saccharomyces cerevisiae cell division cycle: CDC36, CDC37, and CDC39.
    Breter HJ; Ferguson J; Peterson TA; Reed SI
    Mol Cell Biol; 1983 May; 3(5):881-91. PubMed ID: 6346060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mating-defective ste mutations are suppressed by cell division cycle start mutations in Saccharomyces cerevisiae.
    Shuster JR
    Mol Cell Biol; 1982 Sep; 2(9):1052-63. PubMed ID: 6757719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Ndt80, Sum1, and Swe1 as targets of the meiotic recombination checkpoint that control exit from pachytene and spore formation in Saccharomyces cerevisiae.
    Pak J; Segall J
    Mol Cell Biol; 2002 Sep; 22(18):6430-40. PubMed ID: 12192042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclin-dependent kinase promotes formation of the synaptonemal complex in yeast meiosis.
    Zhu Z; Mori S; Oshiumi H; Matsuzaki K; Shinohara M; Shinohara A
    Genes Cells; 2010 Oct; 15(10):1036-50. PubMed ID: 20825495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SPO13 negatively regulates the progression of mitotic and meiotic nuclear division in Saccharomyces cerevisiae.
    McCarroll RM; Esposito RE
    Genetics; 1994 Sep; 138(1):47-60. PubMed ID: 8001793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The half-bridge component Kar1 promotes centrosome separation and duplication during budding yeast meiosis.
    Agarwal M; Jin H; McClain M; Fan J; Koch BA; Jaspersen SL; Yu HG
    Mol Biol Cell; 2018 Aug; 29(15):1798-1810. PubMed ID: 29847244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NDT80, a meiosis-specific gene required for exit from pachytene in Saccharomyces cerevisiae.
    Xu L; Ajimura M; Padmore R; Klein C; Kleckner N
    Mol Cell Biol; 1995 Dec; 15(12):6572-81. PubMed ID: 8524222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint.
    Weiss E; Winey M
    J Cell Biol; 1996 Jan; 132(1-2):111-23. PubMed ID: 8567717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. B-type cyclins CLB5 and CLB6 control the initiation of recombination and synaptonemal complex formation in yeast meiosis.
    Smith KN; Penkner A; Ohta K; Klein F; Nicolas A
    Curr Biol; 2001 Jan; 11(2):88-97. PubMed ID: 11231124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mps1p regulates meiotic spindle pole body duplication in addition to having novel roles during sporulation.
    Straight PD; Giddings TH; Winey M
    Mol Biol Cell; 2000 Oct; 11(10):3525-37. PubMed ID: 11029053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.