BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 2680771)

  • 21. Cloning and nucleotide sequences of lux genes and characterization of luciferase of Xenorhabdus luminescens from a human wound.
    Xi L; Cho KW; Tu SC
    J Bacteriol; 1991 Feb; 173(4):1399-405. PubMed ID: 1995589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of the cloned subunits of bacterial luciferase from separate replicons.
    Gupta SC; O'Brien D; Hastings JW
    Biochem Biophys Res Commun; 1985 Mar; 127(3):1007-11. PubMed ID: 3885942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The complete nucleotide sequence of the lux regulon of Vibrio fischeri and the luxABN region of Photobacterium leiognathi and the mechanism of control of bacterial bioluminescence.
    Baldwin TO; Devine JH; Heckel RC; Lin JW; Shadel GS
    J Biolumin Chemilumin; 1989 Jul; 4(1):326-41. PubMed ID: 2801220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fused bacterial luciferase subunits catalyze light emission in eukaryotes and prokaryotes.
    Boylan M; Pelletier J; Meighen EA
    J Biol Chem; 1989 Feb; 264(4):1915-8. PubMed ID: 2644245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of the lux regulon of Vibrio fischeri.
    Shadel GS; Devine JH; Baldwin TO
    J Biolumin Chemilumin; 1990; 5(2):99-106. PubMed ID: 2186599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial bioluminescence: isolation and expression of the luciferase genes from Vibrio harveyi.
    Belas R; Mileham A; Cohn D; Hilman M; Simon M; Silverman M
    Science; 1982 Nov; 218(4574):791-3. PubMed ID: 10636771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coexpression of luxA and luxB genes of Vibrio fischeri in NIH3T3 mammalian cells and evaluation of its bioluminescence activities.
    Tehrani GA; Mirzaahmadi S; Bandehpour M; Kazemi B
    Luminescence; 2014 Feb; 29(1):13-9. PubMed ID: 23616465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioluminescence (lux) expression in the anaerobe Clostridium perfringens.
    Phillips-Jones MK
    FEMS Microbiol Lett; 1993 Feb; 106(3):265-70. PubMed ID: 8454191
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of bacterial luciferase genes from Vibrio harveyi in Bacillus subtilis and in Escherichia coli.
    Karp M
    Biochim Biophys Acta; 1989 Jan; 1007(1):84-90. PubMed ID: 2491790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship of the luminous bacterial symbiont of the Caribbean flashlight fish, Kryptophanaron alfredi (family Anomalopidae) to other luminous bacteria based on bacterial luciferase (luxA) genes.
    Haygood MG
    Arch Microbiol; 1990; 154(5):496-503. PubMed ID: 2256783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nucleotide sequence of the luxB gene of Vibrio harveyi and the complete amino acid sequence of the beta subunit of bacterial luciferase.
    Johnston TC; Thompson RB; Baldwin TO
    J Biol Chem; 1986 Apr; 261(11):4805-11. PubMed ID: 3514602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interspecific luciferase beta subunit hybrids between Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi.
    Almashanu S; Gendler I; Hadar R; Kuhn J
    Protein Eng; 1996 Sep; 9(9):803-9. PubMed ID: 8888147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of active bacterial luciferase between interspecific subunits in vivo.
    Almashanu S; Tuby A; Hadar R; Einy R; Kuhn J
    J Biolumin Chemilumin; 1995; 10(3):157-67. PubMed ID: 7676858
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simple and sensitive in vivo luciferase assay for tRNA-mediated nonsense suppression.
    Schultz DW; Yarus M
    J Bacteriol; 1990 Feb; 172(2):595-602. PubMed ID: 2105299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The lux genes of the luminous bacterial symbiont, Photobacterium leiognathi, of the ponyfish. Nucleotide sequence, difference in gene organization, and high expression in mutant Escherichia coli.
    Lee CY; Szittner RB; Meighen EA
    Eur J Biochem; 1991 Oct; 201(1):161-7. PubMed ID: 1915359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of genes and gene products necessary for bacterial bioluminescence.
    Engebrecht J; Silverman M
    Proc Natl Acad Sci U S A; 1984 Jul; 81(13):4154-8. PubMed ID: 6377310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. luxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258.
    Corbisier P; Ji G; Nuyts G; Mergeay M; Silver S
    FEMS Microbiol Lett; 1993 Jun; 110(2):231-8. PubMed ID: 8349095
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A plasmid vector and quantitative techniques for the study of transcription termination in Escherichia coli using bacterial luciferase.
    Peabody DS; Andrews CL; Escudero KW; Devine JH; Baldwin TO; Bear DG
    Gene; 1989 Feb; 75(2):289-96. PubMed ID: 2653966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using fusions with luxAB from Vibrio harveyi MAV to quantify induction and catabolite repression of the xyl operon in Staphylococcus carnosus TM300.
    Sizemore C; Geissdörfer W; Hillen W
    FEMS Microbiol Lett; 1993 Mar; 107(2-3):303-6. PubMed ID: 8472912
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intracellular generation of superoxide as a by-product of Vibrio harveyi luciferase expressed in Escherichia coli.
    González-Flecha B; Demple B
    J Bacteriol; 1994 Apr; 176(8):2293-9. PubMed ID: 8157597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.