These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 26807802)

  • 1. A patient-specific EMG-driven neuromuscular model for the potential use of human-inspired gait rehabilitation robots.
    Ma Y; Xie S; Zhang Y
    Comput Biol Med; 2016 Mar; 70():88-98. PubMed ID: 26807802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation.
    Vallery H; van Asseldonk EH; Buss M; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):23-30. PubMed ID: 19211320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait.
    Michaud F; Lamas M; Lugrís U; Cuadrado J
    J Neuroeng Rehabil; 2021 Jan; 18(1):17. PubMed ID: 33509205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic assessment of neuromuscular characteristics using musculoskeletal models: A pilot study.
    Jayaneththi VR; Viloria J; Wiedemann LG; Jarrett C; McDaid AJ
    Comput Biol Med; 2017 Jul; 86():82-89. PubMed ID: 28511122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting muscle forces in gait from EMG signals and musculotendon kinematics.
    White SC; Winter DA
    J Electromyogr Kinesiol; 1992; 2(4):217-31. PubMed ID: 20719615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.
    Heintz S; Gutierrez-Farewik EM
    Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward EMG-controlled force field generation for training and rehabilitation: From movement data to muscle geometry.
    Lotti N; Sanguinati V
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():90-95. PubMed ID: 28813799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control strategies for effective robot assisted gait rehabilitation: the state of art and future prospects.
    Cao J; Xie SQ; Das R; Zhu GL
    Med Eng Phys; 2014 Dec; 36(12):1555-66. PubMed ID: 25205588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active and Progressive Exoskeleton Rehabilitation Using Multisource Information Fusion From EMG and Force-Position EPP.
    Fan Y; Yin Y
    IEEE Trans Biomed Eng; 2013 Dec; 60(12):3314-21. PubMed ID: 23771306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards an SEMG-based tele-operated robot for masticatory rehabilitation.
    Kalani H; Moghimi S; Akbarzadeh A
    Comput Biol Med; 2016 Aug; 75():243-56. PubMed ID: 27322596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining the Online Measurable Input Variables in Human Joint Moment Intelligent Prediction Based on the Hill Muscle Model.
    Xiong B; Zeng N; Li Y; Du M; Huang M; Shi W; Mao G; Yang Y
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098065
    [No Abstract]   [Full Text] [Related]  

  • 14. A review on bio-cooperative control in gait rehabilitation.
    Koenig A; Omlin X; Novak D; Riener R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975454. PubMed ID: 22275652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cybernetic rehabilitation aid: preliminary results for wrist and elbow motions in healthy subjects.
    Akdogan E; Shima K; Kataoka H; Hasegawa M; Otsuka A; Tsuji T
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):697-707. PubMed ID: 22695359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow.
    Koo TK; Mak AF
    J Electromyogr Kinesiol; 2005 Feb; 15(1):12-26. PubMed ID: 15642650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot After Stroke.
    Hu XL; Tong RK; Ho NS; Xue JJ; Rong W; Li LS
    Neurorehabil Neural Repair; 2015 Sep; 29(8):767-76. PubMed ID: 25549656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural Data-Driven Musculoskeletal Modeling for Personalized Neurorehabilitation Technologies.
    Sartori M; Llyod DG; Farina D
    IEEE Trans Biomed Eng; 2016 May; 63(5):879-893. PubMed ID: 27046865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke.
    Hu XL; Tong KY; Song R; Zheng XJ; Leung WW
    Neurorehabil Neural Repair; 2009 Oct; 23(8):837-46. PubMed ID: 19531605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating ultrasound-measured musculotendon parameters to subject-specific EMG-driven model to simulate voluntary elbow flexion for persons after stroke.
    Li L; Tong KY; Hu XL; Hung LK; Koo TK
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):101-9. PubMed ID: 19012998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.