These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 26808055)

  • 1. Selection on protein structure, interaction, and sequence.
    Chi PB; Liberles DA
    Protein Sci; 2016 Jul; 25(7):1168-78. PubMed ID: 26808055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A protein evolution model with independent sites that reproduces site-specific amino acid distributions from the Protein Data Bank.
    Bastolla U; Porto M; Roman HE; Vendruscolo M
    BMC Evol Biol; 2006 May; 6():43. PubMed ID: 16737532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lineage-specific differences in the amino acid substitution process.
    Huzurbazar S; Kolesov G; Massey SE; Harris KC; Churbanov A; Liberles DA
    J Mol Biol; 2010 Mar; 396(5):1410-21. PubMed ID: 20004669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence entropy of folding and the absolute rate of amino acid substitutions.
    Goldstein RA; Pollock DD
    Nat Ecol Evol; 2017 Dec; 1(12):1923-1930. PubMed ID: 29062121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining natural sequence variation with high throughput mutational data to reveal protein interaction sites.
    Melamed D; Young DL; Miller CR; Fields S
    PLoS Genet; 2015 Feb; 11(2):e1004918. PubMed ID: 25671604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interface of protein structure, protein biophysics, and molecular evolution.
    Liberles DA; Teichmann SA; Bahar I; Bastolla U; Bloom J; Bornberg-Bauer E; Colwell LJ; de Koning AP; Dokholyan NV; Echave J; Elofsson A; Gerloff DL; Goldstein RA; Grahnen JA; Holder MT; Lakner C; Lartillot N; Lovell SC; Naylor G; Perica T; Pollock DD; Pupko T; Regan L; Roger A; Rubinstein N; Shakhnovich E; Sjölander K; Sunyaev S; Teufel AI; Thorne JL; Thornton JW; Weinreich DM; Whelan S
    Protein Sci; 2012 Jun; 21(6):769-85. PubMed ID: 22528593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new parameter-rich structure-aware mechanistic model for amino acid substitution during evolution.
    Chi PB; Kim D; Lai JK; Bykova N; Weber CC; Kubelka J; Liberles DA
    Proteins; 2018 Feb; 86(2):218-228. PubMed ID: 29178386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional constraints in the evolution of protein families.
    Worth CL; Gong S; Blundell TL
    Nat Rev Mol Cell Biol; 2009 Oct; 10(10):709-20. PubMed ID: 19756040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epistasis in protein evolution.
    Starr TN; Thornton JW
    Protein Sci; 2016 Jul; 25(7):1204-18. PubMed ID: 26833806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ProtASR: An Evolutionary Framework for Ancestral Protein Reconstruction with Selection on Folding Stability.
    Arenas M; Weber CC; Liberles DA; Bastolla U
    Syst Biol; 2017 Nov; 66(6):1054-1064. PubMed ID: 28057858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epistasis as the primary factor in molecular evolution.
    Breen MS; Kemena C; Vlasov PK; Notredame C; Kondrashov FA
    Nature; 2012 Oct; 490(7421):535-8. PubMed ID: 23064225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are residues in a protein folding nucleus evolutionarily conserved?
    Tseng YY; Liang J
    J Mol Biol; 2004 Jan; 335(4):869-80. PubMed ID: 14698285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of conserved physico-chemical characteristics of proteins by analyzing clusters of positions with co-ordinated substitutions.
    Afonnikov DA; Oshchepkov DY; Kolchanov NA
    Bioinformatics; 2001 Nov; 17(11):1035-46. PubMed ID: 11724732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the contribution of folding stability to nonspecific epistasis in protein evolution.
    Dasmeh P; Serohijos AWR
    Proteins; 2018 Dec; 86(12):1242-1250. PubMed ID: 30039542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutral evolution of proteins: The superfunnel in sequence space and its relation to mutational robustness.
    Noirel J; Simonson T
    J Chem Phys; 2008 Nov; 129(18):185104. PubMed ID: 19045432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Funneled energy landscape unifies principles of protein binding and evolution.
    Yan Z; Wang J
    Proc Natl Acad Sci U S A; 2020 Nov; 117(44):27218-27223. PubMed ID: 33067388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The intrinsic dimension of protein sequence evolution.
    Facco E; Pagnani A; Russo ET; Laio A
    PLoS Comput Biol; 2019 Apr; 15(4):e1006767. PubMed ID: 30958823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using the folding landscapes of proteins to understand protein function.
    Giri Rao VV; Gosavi S
    Curr Opin Struct Biol; 2016 Feb; 36():67-74. PubMed ID: 26812092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational simulations of protein folding to engineer amino acid sequences to encourage desired supersecondary structure formation.
    Gerstman BS; Chapagain PP
    Methods Mol Biol; 2013; 932():191-204. PubMed ID: 22987354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.