These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 26808248)

  • 1. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron.
    Ayala-Parra P; Sierra-Alvarez R; Field JA
    J Hazard Mater; 2016 May; 308():97-105. PubMed ID: 26808248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge.
    Karri S; Sierra-Alvarez R; Field JA
    Biotechnol Bioeng; 2005 Dec; 92(7):810-9. PubMed ID: 16136594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage.
    Ayala-Parra P; Sierra-Alvarez R; Field JA
    J Hazard Mater; 2016 Nov; 317():335-343. PubMed ID: 27318730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors.
    Liu Y; Zhang Y; Ni BJ
    Water Res; 2015 May; 75():292-300. PubMed ID: 25867207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metal removal from wastewater using zero-valent iron nanoparticles.
    Chen SY; Chen WH; Shih CJ
    Water Sci Technol; 2008; 58(10):1947-54. PubMed ID: 19039174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Biogenic Sulfidation of Zero-Valent Iron in Columns: Implications for Promoting Dechlorination in Permeable Reactive Barriers.
    Wang B; Luo Q; Pan Y; Mei Z; Sun T; Zhong Z; He F; Liang L; Wang Z; Xing B
    Environ Sci Technol; 2023 Dec; 57(49):20951-20961. PubMed ID: 38009568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of layered and mixed passive treatment systems for acid mine drainage.
    Jeen SW; Mattson B
    Environ Technol; 2016 Nov; 37(22):2835-51. PubMed ID: 26998668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Vegetable Fibers for PRB to Remove Heavy Metals from Contaminated Aquifers-Comparisons among Cabuya Fibers, Broom Fibers and ZVI.
    Mayacela Rojas CM; Rivera Velásquez MF; Tavolaro A; Molinari A; Fallico C
    Int J Environ Res Public Health; 2017 Jun; 14(7):. PubMed ID: 28672800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water.
    Guo X; Yang Z; Dong H; Guan X; Ren Q; Lv X; Jin X
    Water Res; 2016 Jan; 88():671-680. PubMed ID: 26575476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous remediation of co-contaminated soil by ball-milled zero-valent iron coupled with persulfate oxidation.
    Xue C; Yi Y; Zhou L; Fang Z
    J Environ Manage; 2023 Aug; 340():118004. PubMed ID: 37119628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioaugmented sulfate reduction using enriched anaerobic microflora in the presence of zero valent iron.
    Xin Y; Yong K; Duujong L; Ying F
    Chemosphere; 2008 Nov; 73(9):1436-41. PubMed ID: 18840389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of heavy metals from landfill leachate using zero valent iron and granular activated carbon.
    Bilardi S; Calabrò PS; Greco R; Moraci N
    Environ Technol; 2020 Jan; 41(4):498-510. PubMed ID: 30028646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers.
    Moraci N; Calabrò PS
    J Environ Manage; 2010 Nov; 91(11):2336-41. PubMed ID: 20643500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater.
    Han W; Fu F; Cheng Z; Tang B; Wu S
    J Hazard Mater; 2016 Jan; 302():437-446. PubMed ID: 26521089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biogeochemistry of two types of permeable reactive barriers, organic carbon and iron-bearing organic carbon for mine drainage treatment: column experiments.
    Guo Q; Blowes DW
    J Contam Hydrol; 2009 Jul; 107(3-4):128-39. PubMed ID: 19467564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of zero-valent iron as a permeable reactive barrier for long-term removal of arsenic compounds from synthetic water.
    Lee KJ; Lee Y; Yoon J; Kamala-Kannan S; Park SM; Oh BT
    Environ Technol; 2009 Dec; 30(13):1425-34. PubMed ID: 20088207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfate reduction at low pH to remediate acid mine drainage.
    Sánchez-Andrea I; Sanz JL; Bijmans MF; Stams AJ
    J Hazard Mater; 2014 Mar; 269():98-109. PubMed ID: 24444599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A built-in zero valent iron anaerobic reactor to enhance treatment of azo dye wastewater.
    Zhang Y; Jing Y; Quan X; Liu Y; Onu P
    Water Sci Technol; 2011; 63(4):741-6. PubMed ID: 21330722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute toxicity of heavy metals to acetate-utilizing mixed cultures of sulfate-reducing bacteria: EC100 and EC50.
    Utgikar VP; Chen BY; Chaudhary N; Tabak HH; Haines JR; Govind R
    Environ Toxicol Chem; 2001 Dec; 20(12):2662-9. PubMed ID: 11764146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of inoculum on the performance of sulfate-reducing columns treating heavy metal contaminated water.
    Pruden A; Messner N; Pereyra L; Hanson RE; Hiibel SR; Reardon KF
    Water Res; 2007 Feb; 41(4):904-14. PubMed ID: 17222885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.