BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 26808487)

  • 1. Seasonal and post-trauma remodeling in cone-dominant ground squirrel retina.
    Merriman DK; Sajdak BS; Li W; Jones BW
    Exp Eye Res; 2016 Sep; 150():90-105. PubMed ID: 26808487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental retinal detachment in the cone-dominant ground squirrel retina: morphology and basic immunocytochemistry.
    Linberg KA; Sakai T; Lewis GP; Fisher SK
    Vis Neurosci; 2002; 19(5):603-19. PubMed ID: 12507327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroretinogram of the Cone-Dominant Thirteen-Lined Ground Squirrel during Euthermia and Hibernation in Comparison with the Rod-Dominant Brown Norway Rat.
    Zhang H; Sajdak BS; Merriman DK; McCall MA; Carroll J; Lipinski DM
    Invest Ophthalmol Vis Sci; 2020 Jun; 61(6):6. PubMed ID: 32492111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating seasonal changes of cone photoreceptor structure in the 13-lined ground squirrel.
    Sajdak BS; Salmon AE; Litts KM; Wells C; Allen KP; Dubra A; Merriman DK; Carroll J
    Vision Res; 2019 May; 158():90-99. PubMed ID: 30826354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The topography of rod and cone photoreceptors in the retina of the ground squirrel.
    Kryger Z; Galli-Resta L; Jacobs GH; Reese BE
    Vis Neurosci; 1998; 15(4):685-91. PubMed ID: 9682870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Difference in PNA label intensity between short- and middle-wavelength sensitive cones in the ground squirrel retina.
    Szél A; von Schantz M; Röhlich P; Farber DB; van Veen T
    Invest Ophthalmol Vis Sci; 1993 Dec; 34(13):3641-5. PubMed ID: 8258523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties and content of cyclic nucleotide phosphodiesterase in photoreceptor outer segments of ground squirrel retina.
    Orlov NYa ; Kalinin EV; Orlova TG; Freidin AA
    Biochim Biophys Acta; 1988 Jun; 954(3):325-35. PubMed ID: 2835985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microglial cell activation following retinal detachment: a comparison between species.
    Lewis GP; Sethi CS; Carter KM; Charteris DG; Fisher SK
    Mol Vis; 2005 Jul; 11():491-500. PubMed ID: 16052164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An animal model for studying cone function in retinal detachment.
    Jacobs GH; Calderone JB; Sakai T; Lewis GP; Fisher SK
    Doc Ophthalmol; 2002 Jan; 104(1):119-32. PubMed ID: 11949805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural remodeling in retinal degeneration.
    Marc RE; Jones BW; Watt CB; Strettoi E
    Prog Retin Eye Res; 2003 Sep; 22(5):607-55. PubMed ID: 12892644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ischemia-reperfusion causes exudative detachment of the rabbit retina.
    Uckermann O; Uhlmann S; Pannicke T; Francke M; Gamsalijew R; Makarov F; Ulbricht E; Wiedemann P; Reichenbach A; Osborne NN; Bringmann A
    Invest Ophthalmol Vis Sci; 2005 Jul; 46(7):2592-600. PubMed ID: 15980253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Astrocyte structural reactivity and plasticity in models of retinal detachment.
    Luna G; Keeley PW; Reese BE; Linberg KA; Lewis GP; Fisher SK
    Exp Eye Res; 2016 Sep; 150():4-21. PubMed ID: 27060374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive imaging of the thirteen-lined ground squirrel photoreceptor mosaic.
    Sajdak B; Sulai YN; Langlo CS; Luna G; Fisher SK; Merriman DK; Dubra A
    Vis Neurosci; 2016; 33():e003. PubMed ID: 26923645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ability of hyperoxia to limit the effects of experimental detachment in cone-dominated retina.
    Sakai T; Lewis GP; Linberg KA; Fisher SK
    Invest Ophthalmol Vis Sci; 2001 Dec; 42(13):3264-73. PubMed ID: 11726632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cloning of GRK7, a candidate cone opsin kinase, from cone- and rod-dominant mammalian retinas.
    Weiss ER; Raman D; Shirakawa S; Ducceschi MH; Bertram PT; Wong F; Kraft TW; Osawa S
    Mol Vis; 1998 Dec; 4():27. PubMed ID: 9852166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glial remodeling and neural plasticity in human retinal detachment with proliferative vitreoretinopathy.
    Sethi CS; Lewis GP; Fisher SK; Leitner WP; Mann DL; Luthert PJ; Charteris DG
    Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):329-42. PubMed ID: 15623793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential expression of cone opsin mRNA levels following experimental retinal detachment and reattachment.
    Rex TS; Lewis GP; Geller SF; Fisher SK
    Mol Vis; 2002 Apr; 8():114-8. PubMed ID: 11979236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cone photoreceptor recovery after experimental detachment and reattachment: an immunocytochemical, morphological, and electrophysiological study.
    Sakai T; Calderone JB; Lewis GP; Linberg KA; Fisher SK; Jacobs GH
    Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):416-25. PubMed ID: 12506104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glial cell reactivity in a porcine model of retinal detachment.
    Iandiev I; Uckermann O; Pannicke T; Wurm A; Tenckhoff S; Pietsch UC; Reichenbach A; Wiedemann P; Bringmann A; Uhlmann S
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2161-71. PubMed ID: 16639028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereotyped Synaptic Connectivity Is Restored during Circuit Repair in the Adult Mammalian Retina.
    Beier C; Palanker D; Sher A
    Curr Biol; 2018 Jun; 28(11):1818-1824.e2. PubMed ID: 29804805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.