BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 26808593)

  • 1. Modular Optimization of a Hemicellulose-Utilizing Pathway in Corynebacterium glutamicum for Consolidated Bioprocessing of Hemicellulosic Biomass.
    Yim SS; Choi JW; Lee SH; Jeong KJ
    ACS Synth Biol; 2016 Apr; 5(4):334-43. PubMed ID: 26808593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of Corynebacterium glutamicum for Consolidated Conversion of Hemicellulosic Biomass into Xylonic Acid.
    Yim SS; Choi JW; Lee SH; Jeon EJ; Chung WJ; Jeong KJ
    Biotechnol J; 2017 Nov; 12(11):. PubMed ID: 28799725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of Saccharomyces cerevisiae to utilize xylan as a sole carbohydrate source by co-expression of an endoxylanase, xylosidase and a bacterial xylose isomerase.
    Mert MJ; la Grange DC; Rose SH; van Zyl WH
    J Ind Microbiol Biotechnol; 2016 Apr; 43(4):431-40. PubMed ID: 26749525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously.
    Xiong W; Reyes LH; Michener WE; Maness PC; Chou KJ
    Biotechnol Bioeng; 2018 Jul; 115(7):1755-1763. PubMed ID: 29537062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum.
    Kawaguchi H; Vertès AA; Okino S; Inui M; Yukawa H
    Appl Environ Microbiol; 2006 May; 72(5):3418-28. PubMed ID: 16672486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
    Meiswinkel TM; Gopinath V; Lindner SN; Nampoothiri KM; Wendisch VF
    Microb Biotechnol; 2013 Mar; 6(2):131-40. PubMed ID: 23164409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions.
    Sasaki M; Jojima T; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):691-9. PubMed ID: 18810427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A
    J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose.
    Buschke N; Schröder H; Wittmann C
    Biotechnol J; 2011 Mar; 6(3):306-17. PubMed ID: 21298810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering the cellulolytic bacterium, Clostridium thermocellum, to co-utilize hemicellulose.
    Chou KJ; Croft T; Hebdon SD; Magnusson LR; Xiong W; Reyes LH; Chen X; Miller EJ; Riley DM; Dupuis S; Laramore KA; Keller LM; Winkelman D; Maness PC
    Metab Eng; 2024 May; 83():193-205. PubMed ID: 38631458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Escherichia coli for succinate production from hemicellulose via consolidated bioprocessing.
    Zheng Z; Chen T; Zhao M; Wang Z; Zhao X
    Microb Cell Fact; 2012 Mar; 11():37. PubMed ID: 22455836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in engineering Corynebacterium glutamicum for utilization of hemicellulosic biomass.
    Choi JW; Jeon EJ; Jeong KJ
    Curr Opin Biotechnol; 2019 Jun; 57():17-24. PubMed ID: 30537644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional Characterization of Corynebacterium alkanolyticum β-Xylosidase and Xyloside ABC Transporter in Corynebacterium glutamicum.
    Watanabe A; Hiraga K; Suda M; Yukawa H; Inui M
    Appl Environ Microbiol; 2015 Jun; 81(12):4173-83. PubMed ID: 25862223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of efficient xylose utilizing Pichia pastoris for industrial enzyme production.
    Li P; Sun H; Chen Z; Li Y; Zhu T
    Microb Cell Fact; 2015 Feb; 14():22. PubMed ID: 25889970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of arabinofuranosidases and a xylanase of Corynebacterium alkanolyticum for arabinoxylan utilization in Corynebacterium glutamicum.
    Kuge T; Watanabe A; Hasegawa S; Teramoto H; Inui M
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):5019-5032. PubMed ID: 28409383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Katahira S; Fujita Y; Mizuike A; Fukuda H; Kondo A
    Appl Environ Microbiol; 2004 Sep; 70(9):5407-14. PubMed ID: 15345427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties and applications of microbial beta-D-xylosidases featuring the catalytically efficient enzyme from Selenomonas ruminantium.
    Jordan DB; Wagschal K
    Appl Microbiol Biotechnol; 2010 May; 86(6):1647-58. PubMed ID: 20352422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic hydrolysis of xylan using novel xylanases, β-xylosidases, and an α-L-arabinofuranosidase from Geobacillus thermodenitrificans NG80-2.
    Huang D; Liu J; Qi Y; Yang K; Xu Y; Feng L
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):6023-6037. PubMed ID: 28616644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consolidated bioprocessing of poly(lactate-co-3-hydroxybutyrate) from xylan as a sole feedstock by genetically-engineered Escherichia coli.
    Salamanca-Cardona L; Scheel RA; Bergey NS; Stipanovic AJ; Matsumoto K; Taguchi S; Nomura CT
    J Biosci Bioeng; 2016 Oct; 122(4):406-14. PubMed ID: 27067372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. xylA and xylB overexpression as a successful strategy for improving xylose utilization and poly-3-hydroxybutyrate production in Burkholderia sacchari.
    Guamán LP; Oliveira-Filho ER; Barba-Ostria C; Gomez JGC; Taciro MK; da Silva LF
    J Ind Microbiol Biotechnol; 2018 Mar; 45(3):165-173. PubMed ID: 29349569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.