These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 26808673)

  • 41. Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries.
    Fang X; Guo X; Mao Y; Hua C; Shen L; Hu Y; Wang Z; Wu F; Chen L
    Chem Asian J; 2012 May; 7(5):1013-7. PubMed ID: 22374889
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Building better lithium-sulfur batteries: from LiNO3 to solid oxide catalyst.
    Ding N; Zhou L; Zhou C; Geng D; Yang J; Chien SW; Liu Z; Ng MF; Yu A; Hor TS; Sullivan MB; Zong Y
    Sci Rep; 2016 Sep; 6():33154. PubMed ID: 27629986
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries.
    Yang X; Zhang L; Zhang F; Huang Y; Chen Y
    ACS Nano; 2014 May; 8(5):5208-15. PubMed ID: 24749945
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polysulfide Binding to Several Nanoscale Magnéli Phases Synthesized in Carbon for Long-Life Lithium-Sulfur Battery Cathodes.
    Zubair U; Amici J; Francia C; McNulty D; Bodoardo S; O'Dwyer C
    ChemSusChem; 2018 Jun; 11(11):1838-1848. PubMed ID: 29624888
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A class of polysulfide catholytes for lithium-sulfur batteries: energy density, cyclability, and voltage enhancement.
    Yu X; Manthiram A
    Phys Chem Chem Phys; 2015 Jan; 17(3):2127-36. PubMed ID: 25484001
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molybdenum carbide nanostructures for electrocatalytic polysulfide conversion in lithium-polysulfide batteries.
    Wu Y; Deng J; Zhou Y; Huang Y; Li Y
    Nanoscale Horiz; 2020 Mar; 5(3):501-506. PubMed ID: 32118217
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Illuminating Polysulfide Distribution in Lithium Sulfur Batteries; Tracking Polysulfide Shuttle Using
    Coke K; Johnson MJ; Robinson JB; Rettie AJE; Miller TS; Shearing PR
    ACS Appl Mater Interfaces; 2024 Apr; 16(16):20329-40. PubMed ID: 38598420
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Long-Life and High-Areal-Capacity Li-S Batteries Enabled by a Light-Weight Polar Host with Intrinsic Polysulfide Adsorption.
    Pang Q; Nazar LF
    ACS Nano; 2016 Apr; 10(4):4111-8. PubMed ID: 26841116
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polysulfide Anchoring Mechanism Revealed by Atomic Layer Deposition of V
    Carter R; Oakes L; Muralidharan N; Cohn AP; Douglas A; Pint CL
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7185-7192. PubMed ID: 28165213
    [TBL] [Abstract][Full Text] [Related]  

  • 50. LDHs derived nanoparticle-stacked metal nitride as interlayer for long-life lithium sulfur batteries.
    Li Z; Ma Z; Wang Y; Chen R; Wu Z; Wang S
    Sci Bull (Beijing); 2018 Feb; 63(3):169-175. PubMed ID: 36659002
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrostatic Polysulfides Confinement to Inhibit Redox Shuttle Process in the Lithium Sulfur Batteries.
    Ling M; Yan W; Kawase A; Zhao H; Fu Y; Battaglia VS; Liu G
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31741-31745. PubMed ID: 28809469
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrocatalysis of polysulfide conversion by conductive RuO
    Wang R; Wang K; Gao S; Jiang M; Han J; Zhou M; Cheng S; Jiang K
    Nanoscale; 2018 Sep; 10(35):16730-16737. PubMed ID: 30156247
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hollow Carbon Nanofibers Filled with MnO2 Nanosheets as Efficient Sulfur Hosts for Lithium-Sulfur Batteries.
    Li Z; Zhang J; Lou XW
    Angew Chem Int Ed Engl; 2015 Oct; 54(44):12886-90. PubMed ID: 26349817
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 2 D Materials for Inhibiting the Shuttle Effect in Advanced Lithium-Sulfur Batteries.
    Ali T; Yan C
    ChemSusChem; 2020 Mar; 13(6):1447-1479. PubMed ID: 31436389
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reinforced Conductive Confinement of Sulfur for Robust and High-Performance Lithium-Sulfur Batteries.
    Lai C; Wu Z; Gu X; Wang C; Xi K; Kumar RV; Zhang S
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):23885-92. PubMed ID: 26470838
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Grafting and Depositing Lithium Polysulfides on Cathodes for Cycling Stability of Lithium-Sulfur Batteries.
    Wu J; Zhang B; Liu J; Liu S; Yan T; Gao X
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40685-40694. PubMed ID: 34407612
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Novel Optical Diagnostic for In Situ Measurements of Lithium Polysulfides in Battery Electrolytes.
    Saqib N; Silva CJ; Maupin CM; Porter JM
    Appl Spectrosc; 2017 Jul; 71(7):1593-1599. PubMed ID: 28145749
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries.
    Li G; Wang X; Seo MH; Li M; Ma L; Yuan Y; Wu T; Yu A; Wang S; Lu J; Chen Z
    Nat Commun; 2018 Feb; 9(1):705. PubMed ID: 29453414
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phosphorus-doped graphene nanosheets anchored with cerium oxide nanocrystals as effective sulfur hosts for high performance lithium-sulfur batteries.
    Kim M; Lee J; Jeon Y; Piao Y
    Nanoscale; 2019 Aug; 11(29):13758-13766. PubMed ID: 31237295
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries.
    Wu HL; Huff LA; Gewirth AA
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1709-19. PubMed ID: 25543831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.