These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 26808687)

  • 1. Hierarchical chrysanthemum-flower-like carbon nanomaterials grown by chemical vapor deposition.
    Ding EX; Geng HZ; Wang J; Luo ZJ; Li G; Wang WY; Li LG; Yang HJ; Da SX; Wang J; Jiang H; Kauppinen EI
    Nanotechnology; 2016 Feb; 27(8):085602. PubMed ID: 26808687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Nitrogen and Hydrogen Gases on the Synthesis of Carbon Nanomaterials from Coal Waste Fly Ash as a Catalyst.
    Hintsho N; Shaikjee A; Triphati PK; Masenda H; Naidoo D; Franklyn P; Durbach S
    J Nanosci Nanotechnol; 2016 May; 16(5):4672-83. PubMed ID: 27483807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of support and reactant on the yield and structure of carbon growth by chemical vapor deposition.
    Yu Z; Chen D; Tøtdal B; Holmen A
    J Phys Chem B; 2005 Apr; 109(13):6096-102. PubMed ID: 16851671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flower-shaped ZnO nanostructures obtained by cyclic feeding chemical vapour deposition: structural and optical properties.
    Umar A; Lee S; Im YH; Hahn YB
    Nanotechnology; 2005 Oct; 16(10):2462-8. PubMed ID: 20818036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape-Controlled Growth of Carbon Nanostructures: Yield and Mechanism.
    Ma Y; Sun X; Yang N; Xia J; Zhang L; Jiang X
    Chemistry; 2015 Aug; 21(35):12370-5. PubMed ID: 26140507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive analysis of the CVD growth of boron nitride nanotubes.
    Pakdel A; Zhi C; Bando Y; Nakayama T; Golberg D
    Nanotechnology; 2012 Jun; 23(21):215601. PubMed ID: 22551670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of catalyst nanoparticles and nucleation of carbon nanotubes in chemical vapor deposition.
    Verissimo C; Aguiar MR; Moshkalev SA
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4459-66. PubMed ID: 19916474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Process synthesis and optimization for the production of carbon nanostructures.
    Iyuke SE; Mamvura TA; Liu K; Sibanda V; Meyyappan M; Varadan VK
    Nanotechnology; 2009 Sep; 20(37):375602. PubMed ID: 19706958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical carbon nanostructure design: ultra-long carbon nanofibers decorated with carbon nanotubes.
    El Mel AA; Achour A; Xu W; Choi CH; Gautron E; Angleraud B; Granier A; Le Brizoual L; Djouadi MA; Tessier PY
    Nanotechnology; 2011 Oct; 22(43):435302. PubMed ID: 21971265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of catalyst particles for carbon nanocoil growth.
    Qian J; Pan L; Li D; Yu N; Liu D
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7366-9. PubMed ID: 21137936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-temperature synthesis of amorphous carbon nanocoils via acetylene coupling on copper nanocrystal surfaces at 468 K: a reaction mechanism analysis.
    Qin Y; Jiang X; Cui Z
    J Phys Chem B; 2005 Nov; 109(46):21749-54. PubMed ID: 16853825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Y-junction carbon nanocoils: synthesis by chemical vapor deposition and formation mechanism.
    Ding EX; Wang J; Geng HZ; Wang WY; Wang Y; Zhang ZC; Luo ZJ; Yang HJ; Zou CX; Kang J; Pan L
    Sci Rep; 2015 Jun; 5():11281. PubMed ID: 26063127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. K and Au bicatalyst assisted growth of carbon nanocoils from acetylene: effect of deposition parameters on field emission properties.
    Tsou TY; Lee CY; Chiu HT
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6505-11. PubMed ID: 23167627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Converting carbon nanofibers to carbon nanoneedles: catalyst splitting and reverse motion.
    Yun J; Wang R; Hong MH; Thong JT; Foo YL; Thompson CV; Choi WK
    Nanoscale; 2010 Oct; 2(10):2180-5. PubMed ID: 20697651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron silicide root formation in carbon nanotubes grown by microwave PECVD.
    AuBuchon JF; Daraio C; Chen LH; Gapin AI; Jin S
    J Phys Chem B; 2005 Dec; 109(51):24215-9. PubMed ID: 16375415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural changes in fibrous carbon nanomaterials produced by adding sulfur during chemical vapor deposition.
    Wu HC; Li YY
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8278-85. PubMed ID: 21121328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method.
    Choi EC; Park YS; Hong B
    Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the size and the activity of Fe particles for synthesis of carbon nanotubes.
    Chee SW; Sharma R
    Micron; 2012 Nov; 43(11):1181-7. PubMed ID: 22349468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition.
    Chen X; Wang R; Xu J; Yu D
    Micron; 2004; 35(6):455-60. PubMed ID: 15120130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of carbon nanostructures on carbonized electrospun nanofibers with palladium nanoparticles.
    Lai C; Guo Q; Wu XF; Reneker DH; Hou H
    Nanotechnology; 2008 May; 19(19):195303. PubMed ID: 21825712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.