These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 26808695)
1. Evaluation of the Performance of the B3LYP, PBE0, and M06 DFT Functionals, and DBLOC-Corrected Versions, in the Calculation of Redox Potentials and Spin Splittings for Transition Metal Containing Systems. Coskun D; Jerome SV; Friesner RA J Chem Theory Comput; 2016 Mar; 12(3):1121-8. PubMed ID: 26808695 [TBL] [Abstract][Full Text] [Related]
2. Correcting Systematic Errors in DFT Spin-Splitting Energetics for Transition Metal Complexes. Hughes TF; Friesner RA J Chem Theory Comput; 2011 Jan; 7(1):19-32. PubMed ID: 26606215 [TBL] [Abstract][Full Text] [Related]
3. Accurate pKa prediction in first-row hexaaqua transition metal complexes using the B3LYP-DBLOC method. Jerome SV; Hughes TF; Friesner RA J Phys Chem B; 2014 Jul; 118(28):8008-16. PubMed ID: 24707985 [TBL] [Abstract][Full Text] [Related]
4. Heats of Formation of Medium-Sized Organic Compounds from Contemporary Electronic Structure Methods. Minenkov Y; Wang H; Wang Z; Sarathy SM; Cavallo L J Chem Theory Comput; 2017 Aug; 13(8):3537-3560. PubMed ID: 28636351 [TBL] [Abstract][Full Text] [Related]
5. C-O bond cleavage of dimethyl ether by transition metal ions: a systematic study on catalytic properties of metals and performance of DFT functionals. Liu C; Peterson C; Wilson AK J Phys Chem A; 2013 Jun; 117(24):5140-8. PubMed ID: 23650902 [TBL] [Abstract][Full Text] [Related]
6. Troubles in the Systematic Prediction of Transition Metal Thermochemistry with Contemporary Out-of-the-Box Methods. Minenkov Y; Chermak E; Cavallo L J Chem Theory Comput; 2016 Apr; 12(4):1542-60. PubMed ID: 27002380 [TBL] [Abstract][Full Text] [Related]
7. Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn-Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition Metals? Xu X; Zhang W; Tang M; Truhlar DG J Chem Theory Comput; 2015 May; 11(5):2036-52. PubMed ID: 26574408 [TBL] [Abstract][Full Text] [Related]
8. Performance of the widely used Minnesota density functionals for the prediction of heat of formations, ionization potentials of some benchmarked first row transition metal complexes. Shil S; Bhattacharya D; Sarkar S; Misra A J Phys Chem A; 2013 Jun; 117(23):4945-55. PubMed ID: 23701489 [TBL] [Abstract][Full Text] [Related]
9. Hybrid Density Functionals for Clusters of Late Transition Metals: Assessing Energetic and Structural Properties. Soini TM; Genest A; Nikodem A; Rösch N J Chem Theory Comput; 2014 Oct; 10(10):4408-16. PubMed ID: 26588138 [TBL] [Abstract][Full Text] [Related]
10. Performance of conventional and range-separated hybrid density functionals in calculations of electronic circular dichroism spectra of transition metal complexes. Rudolph M; Autschbach J J Phys Chem A; 2011 Dec; 115(51):14677-86. PubMed ID: 22082193 [TBL] [Abstract][Full Text] [Related]
11. Metal-phosphine bond strengths of the transition metals: a challenge for DFT. Minenkov Y; Occhipinti G; Jensen VR J Phys Chem A; 2009 Oct; 113(43):11833-44. PubMed ID: 19736907 [TBL] [Abstract][Full Text] [Related]
12. Development of Accurate DFT Methods for Computing Redox Potentials of Transition Metal Complexes: Results for Model Complexes and Application to Cytochrome P450. Hughes TF; Friesner RA J Chem Theory Comput; 2012 Feb; 8(2):442-59. PubMed ID: 26596595 [TBL] [Abstract][Full Text] [Related]
13. In search of the best DFT functional for dealing with organic anionic species. Borioni JL; Puiatti M; Vera DM; Pierini AB Phys Chem Chem Phys; 2017 Mar; 19(13):9189-9198. PubMed ID: 28317981 [TBL] [Abstract][Full Text] [Related]
14. Assessment of the "6-31+G** + LANL2DZ" mixed basis set coupled with density functional theory methods and the effective core potential: prediction of heats of formation and ionization potentials for first-row-transition-metal complexes. Yang Y; Weaver MN; Merz KM J Phys Chem A; 2009 Sep; 113(36):9843-51. PubMed ID: 19691271 [TBL] [Abstract][Full Text] [Related]
15. Density functional study of multiplicity-changing valence and Rydberg excitations of p-block elements: delta self-consistent field, collinear spin-flip time-dependent density functional theory (DFT), and conventional time-dependent DFT. Yang K; Peverati R; Truhlar DG; Valero R J Chem Phys; 2011 Jul; 135(4):044118. PubMed ID: 21806101 [TBL] [Abstract][Full Text] [Related]
16. A B3LYP-DBLOC empirical correction scheme for ligand removal enthalpies of transition metal complexes: parameterization against experimental and CCSD(T)-F12 heats of formation. Hughes TF; Harvey JN; Friesner RA Phys Chem Chem Phys; 2012 Jun; 14(21):7724-38. PubMed ID: 22513477 [TBL] [Abstract][Full Text] [Related]
17. Successful application of the DBLOC method to the hydroxylation of camphor by cytochrome p450. Jerome SV; Hughes TF; Friesner RA Protein Sci; 2016 Jan; 25(1):277-85. PubMed ID: 26441133 [TBL] [Abstract][Full Text] [Related]
18. Comparative Assessment of DFT Performances in Ru- and Rh-Promoted σ-Bond Activations. Sun Y; Hu L; Chen H J Chem Theory Comput; 2015 Apr; 11(4):1428-38. PubMed ID: 26574354 [TBL] [Abstract][Full Text] [Related]
19. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods. Liu Y; Zhao J; Li F; Chen Z J Comput Chem; 2013 Jan; 34(2):121-31. PubMed ID: 22949382 [TBL] [Abstract][Full Text] [Related]
20. Assessing the performance of density functional theory for the electronic structure of metal-salens: the M06 suite of functionals and the d⁴-metals. Takatani T; Sears JS; Sherrill CD J Phys Chem A; 2010 Nov; 114(43):11714-8. PubMed ID: 20942498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]