These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 26810030)
21. Use of metakaolin to stabilize sewage sludge ash and municipal solid waste incineration fly ash in cement-based materials. Cyr M; Idir R; Escadeillas G J Hazard Mater; 2012 Dec; 243():193-203. PubMed ID: 23122733 [TBL] [Abstract][Full Text] [Related]
22. Effect of various types of thermochemical processing of sewage sludges on phosphorus speciation, solubility, and fertilization performance. Steckenmesser D; Vogel C; Adam C; Steffens D Waste Manag; 2017 Apr; 62():194-203. PubMed ID: 28242174 [TBL] [Abstract][Full Text] [Related]
23. Co-incineration effect of sewage sludge and municipal solid waste on the behavior of heavy metals by phosphorus. Chen M; Oshita K; Takaoka M; Shiota K Waste Manag; 2022 Oct; 152():112-117. PubMed ID: 36027856 [TBL] [Abstract][Full Text] [Related]
24. Environmental and resource implications of phosphorus recovery from waste activated sludge. Sørensen BL; Dall OL; Habib K Waste Manag; 2015 Nov; 45():391-9. PubMed ID: 25792438 [TBL] [Abstract][Full Text] [Related]
25. Development of a novel phosphorus recovery system using incinerated sewage sludge ash (ISSA) and phosphorus-selective adsorbent. Yu X; Nakamura Y; Otsuka M; Omori D; Haruta S Waste Manag; 2021 Feb; 120():41-49. PubMed ID: 33285373 [TBL] [Abstract][Full Text] [Related]
26. Heavy metal removal from sewage sludge ash by thermochemical treatment with polyvinylchloride. Vogel C; Exner RM; Adam C Environ Sci Technol; 2013 Jan; 47(1):563-7. PubMed ID: 23189972 [TBL] [Abstract][Full Text] [Related]
27. Thermal treatment of sewage sludge: A comparative review of the conversion principle, recovery methods and bioavailability-predicting of phosphorus. Zhu Y; Zhai Y; Li S; Liu X; Wang B; Liu X; Fan Y; Shi H; Li C; Zhu Y Chemosphere; 2022 Mar; 291(Pt 3):133053. PubMed ID: 34861255 [TBL] [Abstract][Full Text] [Related]
28. Towards a complete recycling of phosphorus in wastewater treatment--options in Germany. Petzet S; Cornel P Water Sci Technol; 2011; 64(1):29-35. PubMed ID: 22053454 [TBL] [Abstract][Full Text] [Related]
30. Contamination of organic nutrient sources with potentially toxic elements, antibiotics and pathogen microorganisms in relation to P fertilizer potential and treatment options for the production of sustainable fertilizers: A review. Bloem E; Albihn A; Elving J; Hermann L; Lehmann L; Sarvi M; Schaaf T; Schick J; Turtola E; Ylivainio K Sci Total Environ; 2017 Dec; 607-608():225-242. PubMed ID: 28692893 [TBL] [Abstract][Full Text] [Related]
31. Complete survey of German sewage sludge ash. Krüger O; Grabner A; Adam C Environ Sci Technol; 2014 Oct; 48(20):11811-8. PubMed ID: 25265150 [TBL] [Abstract][Full Text] [Related]
32. Recovery of phosphorus as struvite from sewage sludge ash. Xu H; He P; Gu W; Wang G; Shao L J Environ Sci (China); 2012; 24(8):1533-8. PubMed ID: 23513698 [TBL] [Abstract][Full Text] [Related]
33. Heavy metal and phosphorus content of fractions from manure treatment and incineration. Møller HB; Jensen HS; Tobiasen L; Hansen MN Environ Technol; 2007 Dec; 28(12):1403-18. PubMed ID: 18341150 [TBL] [Abstract][Full Text] [Related]
34. Fertilizer and Soil Solubility of Secondary P Sources-The Estimation of Their Applicability to Agricultural Soils. Václavková Š; Šyc M; Moško J; Pohořelý M; Svoboda K Environ Sci Technol; 2018 Sep; 52(17):9810-9817. PubMed ID: 30078315 [TBL] [Abstract][Full Text] [Related]
35. Characterization of controlled low-strength material obtained from dewatered sludge and refuse incineration bottom ash: mechanical and microstructural perspectives. Zhen G; Lu X; Zhao Y; Niu J; Chai X; Su L; Li YY; Liu Y; Du J; Hojo T; Hu Y J Environ Manage; 2013 Nov; 129():183-9. PubMed ID: 23933484 [TBL] [Abstract][Full Text] [Related]
36. Energy and nutrient recovery from sewage sludge via pyrolysis. Bridle TR; Pritchard D Water Sci Technol; 2004; 50(9):169-75. PubMed ID: 15581009 [TBL] [Abstract][Full Text] [Related]
37. Assessing and predicting phosphorus phytoavailability from sludge incineration ashes. Joseph CA; Khiari L; Gallichand J; Beecher N Chemosphere; 2022 Feb; 288(Pt 2):132498. PubMed ID: 34626660 [TBL] [Abstract][Full Text] [Related]
38. Effect of incineration temperature on phosphorus availability in bio-ash from manure. Thygesen AM; Wernberg O; Skou E; Sommer SG Environ Technol; 2011 Apr; 32(5-6):633-8. PubMed ID: 21877544 [TBL] [Abstract][Full Text] [Related]
39. Inhibition of the de novo synthesis of PCDD/Fs on model fly ash by sludge drying gases. Chen T; Zhan MX; Lin XQ; Li XD; Lu SY; Yan JH; Buekens A; Cen KF Chemosphere; 2014 Nov; 114():226-32. PubMed ID: 25113206 [TBL] [Abstract][Full Text] [Related]
40. Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge. Li R; Zhang Z; Li Y; Teng W; Wang W; Yang T Chemosphere; 2015 Dec; 141():57-61. PubMed ID: 26113414 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]