These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26810183)

  • 1. In-line Monitoring of Monomer and Polymer Content During Microgel Synthesis Using Precipitation Polymerization via Raman Spectroscopy and Indirect Hard Modeling.
    Meyer-Kirschner J; Kather M; Pich A; Engel D; Marquardt W; Viell J; Mitsos A
    Appl Spectrosc; 2016 Mar; 70(3):416-26. PubMed ID: 26810183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Component Content Measurement Method Modified Using Indirect Hard Modeling for Polymer Blends Based on Raman Spectroscopy.
    Huang L; Fang Y; Lin Z; Shi S; Wu H; Liang X; Wang M; Jin G
    Appl Spectrosc; 2022 Jun; 76(6):689-698. PubMed ID: 35081766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioprocess in-line monitoring using Raman spectroscopy and Indirect Hard Modeling (IHM): A simple calibration yields a robust model.
    Müller DH; Flake C; Brands T; Koß HJ
    Biotechnol Bioeng; 2023 Jul; 120(7):1857-1868. PubMed ID: 37166028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioprocess in-line monitoring and control using Raman spectroscopy and Indirect Hard Modeling (IHM).
    Müller DH; Börger M; Thien J; Koß HJ
    Biotechnol Bioeng; 2024 Jul; 121(7):2225-2233. PubMed ID: 38678541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of monodisperse poly(N-isopropylacrylamide) microgel particles with homogenous cross-link density distribution.
    Acciaro R; Gilányi T; Varga I
    Langmuir; 2011 Jun; 27(12):7917-25. PubMed ID: 21591700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Counter-effect of Brownian and elastic forces on the liquid-to-solid transition of microgel suspensions.
    Di Lorenzo F; Seiffert S
    Soft Matter; 2015 Jul; 11(26):5235-45. PubMed ID: 26053542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilayered composite microgels synthesized by surfactant-free seeded polymerization.
    Suzuki D; Yamagata T; Murai M
    Langmuir; 2013 Aug; 29(33):10579-85. PubMed ID: 23895302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of microgels sensitive toward copper II ions.
    Muratalin M; Luckham PF
    J Colloid Interface Sci; 2013 Apr; 396():1-8. PubMed ID: 23403115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring the internal structure of poly(N-vinylcaprolactam) microgels with variable cross-link concentration.
    Schneider F; Balaceanu A; Feoktystov A; Pipich V; Wu Y; Allgaier J; Pyckhout-Hintzen W; Pich A; Schneider GJ
    Langmuir; 2014 Dec; 30(50):15317-26. PubMed ID: 25493607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inline Raman Spectroscopy and Indirect Hard Modeling for Concentration Monitoring of Dissociated Acid Species.
    Echtermeyer A; Marks C; Mitsos A; Viell J
    Appl Spectrosc; 2021 May; 75(5):506-519. PubMed ID: 33107761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and properties of polyelectrolyte microgel particles.
    Nur H; Pinkrah VT; Mitchell JC; Benée LS; Snowden MJ
    Adv Colloid Interface Sci; 2010 Jul; 158(1-2):15-20. PubMed ID: 19712922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheological behavior of acid-swellable cationic copolymer latexes.
    Tan BH; Tam KC; Dupin D; Armes SP
    Langmuir; 2010 Feb; 26(4):2736-44. PubMed ID: 19831408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study.
    Stieger M; Pedersen JS; Lindner P; Richtering W
    Langmuir; 2004 Aug; 20(17):7283-92. PubMed ID: 15301516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unusual temperature-induced swelling of ionizable poly(N-isopropylacrylamide)-based microgels: experimental and theoretical insights into its molecular origin.
    Giussi JM; Velasco MI; Longo GS; Acosta RH; Azzaroni O
    Soft Matter; 2015 Dec; 11(45):8879-86. PubMed ID: 26400774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Monitoring of Microgel Formation during Precipitation Polymerization of
    Virtanen OLJ; Kather M; Meyer-Kirschner J; Melle A; Radulescu A; Viell J; Mitsos A; Pich A; Richtering W
    ACS Omega; 2019 Feb; 4(2):3690-3699. PubMed ID: 31459582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer dynamics in responsive microgels: influence of cononsolvency and microgel architecture.
    Scherzinger C; Holderer O; Richter D; Richtering W
    Phys Chem Chem Phys; 2012 Feb; 14(8):2762-8. PubMed ID: 22252036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentration measurements in ionic liquid-water mixtures by mid-infrared spectroscopy and indirect hard modeling.
    Viell J; Marquardt W
    Appl Spectrosc; 2012 Feb; 66(2):208-17. PubMed ID: 22449285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of pH-responsive microgels containing methacrylic acid: effects of particle composition and added calcium.
    Dalmont H; Pinprayoon O; Saunders BR
    Langmuir; 2008 Mar; 24(6):2834-40. PubMed ID: 18290684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and dynamics of a thermoresponsive microgel around its volume phase transition temperature.
    Ghugare SV; Chiessi E; Telling MT; Deriu A; Gerelli Y; Wuttke J; Paradossi G
    J Phys Chem B; 2010 Aug; 114(32):10285-93. PubMed ID: 20701364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures and dynamics of thermosensitive microgel suspensions studied with three-dimensional cross-correlated light scattering.
    Pyett S; Richtering W
    J Chem Phys; 2005 Jan; 122(3):34709. PubMed ID: 15740219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.