These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26810668)

  • 1. Oribatid communities and heavy metal bioaccumulation in selected species associated with lichens in a heavily contaminated habitat.
    Skubała P; Rola K; Osyczka P
    Environ Sci Pollut Res Int; 2016 May; 23(9):8861-71. PubMed ID: 26810668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oribatid mite communities on lichens in heavily contaminated post-smelting dumps.
    Skubała P; Rola K; Osyczka P; Kafel A
    Arch Environ Contam Toxicol; 2014 Nov; 67(4):578-92. PubMed ID: 25034334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different Heavy Metal Accumulation Strategies of Epilithic Lichens Colonising Artificial Post-Smelting Wastes.
    Rola K; Osyczka P; Kafel A
    Arch Environ Contam Toxicol; 2016 Feb; 70(2):418-28. PubMed ID: 26155778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oribatid mite communities and metal bioaccumulation in oribatid species (Acari, Oribatida) along the heavy metal gradient in forest ecosystems.
    Skubała P; Kafel A
    Environ Pollut; 2004 Nov; 132(1):51-60. PubMed ID: 15276273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modifications in the structure of the lichen Cladonia thallus in the aftermath of habitat contamination and implications for its heavy-metal accumulation capacity.
    Osyczka P; Boroń P; Lenart-Boroń A; Rola K
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1950-1961. PubMed ID: 29105035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metal sensitivity and bioconcentration in oribatid mites (Acari, Oribatida) Gradient study in meadow ecosystems.
    Skubała P; Zaleski T
    Sci Total Environ; 2012 Jan; 414():364-72. PubMed ID: 22134027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation dynamics and cellular locations of Pb, Zn and Cd in resident and transplanted Flavocetraria nivalis lichens near a former Pb-Zn mine.
    Søndergaard J
    Environ Monit Assess; 2013 Dec; 185(12):10167-76. PubMed ID: 23832185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrity of lichen cell membranes as an indicator of heavy-metal pollution levels in soil.
    Osyczka P; Rola K
    Ecotoxicol Environ Saf; 2019 Jun; 174():26-34. PubMed ID: 30818257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of the lichen Cladonia rei Schaer. to strong heavy metal contamination of the substrate.
    Osyczka P; Rola K
    Environ Sci Pollut Res Int; 2013 Jul; 20(7):5076-84. PubMed ID: 23589242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trace element concentrations in lichens collected in the Beskidy Mountains, the Outer Western Carpathians.
    Klimek B; Tarasek A; Hajduk J
    Bull Environ Contam Toxicol; 2015 Apr; 94(4):532-6. PubMed ID: 25634324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy-metal tolerance of photobiont in pioneer lichens inhabiting heavily polluted sites.
    Rola K; Latkowska E; Myśliwa-Kurdziel B; Osyczka P
    Sci Total Environ; 2019 Aug; 679():260-269. PubMed ID: 31082599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of heavy metals in some species of lichens in south Tamilnadu, India.
    Uijily ME; Kumaraguru AK
    J Environ Sci Eng; 2004 Jul; 46(3):186-93. PubMed ID: 16669308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residual effects of lead and zinc mining on freshwater mussels in the Spring River Basin (Kansas, Missouri, and Oklahoma, USA).
    Angelo RT; Cringan MS; Chamberlain DL; Stahl AJ; Haslouer SG; Goodrich CA
    Sci Total Environ; 2007 Oct; 384(1-3):467-96. PubMed ID: 17669474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competition between heavy metal ions for binding sites in lichens: Implications for biomonitoring studies.
    Paoli L; Vannini A; Monaci F; Loppi S
    Chemosphere; 2018 May; 199():655-660. PubMed ID: 29471235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen.
    Basile A; Sorbo S; Aprile G; Conte B; Castaldo Cobianchi R
    Environ Pollut; 2008 Jan; 151(2):401-7. PubMed ID: 18179850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into the pattern of heavy-metal accumulation in lichen thalli.
    Rola K
    J Trace Elem Med Biol; 2020 Apr; 61():126512. PubMed ID: 32299012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of mercury and other heavy metals accumulated in lichen Usnea antarctica from James Ross Island, Antarctica.
    Zvěřina O; Láska K; Cervenka R; Kuta J; Coufalík P; Komárek J
    Environ Monit Assess; 2014 Dec; 186(12):9089-100. PubMed ID: 25261983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological and chemical response of lichens transplanted in and around an industrial area of south Italy: relationship with the lichen diversity.
    Paoli L; Pisani T; Guttová A; Sardella G; Loppi S
    Ecotoxicol Environ Saf; 2011 May; 74(4):650-7. PubMed ID: 21251715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.
    Li J; Yu H; Luan Y
    Int J Environ Res Public Health; 2015 Nov; 12(12):14958-73. PubMed ID: 26703632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lichens as a tool for biogeochemical prospecting.
    Chettri MK; Sawidis T; Karataglis S
    Ecotoxicol Environ Saf; 1997 Dec; 38(3):322-35. PubMed ID: 9469887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.