BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 26811081)

  • 1. Comparing position and orientation accuracy of different electromagnetic sensors for tracking during interventions.
    Nijkamp J; Schermers B; Schmitz S; de Jonge S; Kuhlmann K; van der Heijden F; Sonke JJ; Ruers T
    Int J Comput Assist Radiol Surg; 2016 Aug; 11(8):1487-98. PubMed ID: 26811081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical Note: Identification of an optimal electromagnetic sensor for in vivo electromagnetic-tracked scintillation dosimeter for HDR brachytherapy.
    Tho D; Beaulieu L
    Med Phys; 2019 May; 46(5):2031-2036. PubMed ID: 30919450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy assessment of target tracking using two 5-degrees-of-freedom wireless transponders.
    Eppenga R; Kuhlmann K; Ruers T; Nijkamp J
    Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):369-377. PubMed ID: 31724113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polhemus EM tracked Micro Sensor for CT-guided interventions.
    Franz AM; Seitel A; Cheray D; Maier-Hein L
    Med Phys; 2019 Jan; 46(1):15-24. PubMed ID: 30414277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved electromagnetic tracking for catheter path reconstruction with application in high-dose-rate brachytherapy.
    Lugez E; Sadjadi H; Joshi CP; Akl SG; Fichtinger G
    Int J Comput Assist Radiol Surg; 2017 Apr; 12(4):681-689. PubMed ID: 28215003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromagnetic tracking in image-guided laparoscopic surgery: Comparison with optical tracking and feasibility study of a combined laparoscope and laparoscopic ultrasound system.
    Xiao G; Bonmati E; Thompson S; Evans J; Hipwell J; Nikitichev D; Gurusamy K; Ourselin S; Hawkes DJ; Davidson B; Clarkson MJ
    Med Phys; 2018 Nov; 45(11):5094-5104. PubMed ID: 30247765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technical Note: Assessment of electromagnetic tracking systems in a surgical environment using ultrasonography and ureteroscopy instruments for percutaneous renal access.
    Gomes-Fonseca J; Veloso F; Queirós S; Morais P; Pinho ACM; Fonseca JC; Correia-Pinto J; Lima E; Vilaça JL
    Med Phys; 2020 Jan; 47(1):19-26. PubMed ID: 31661566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of the da Vinci surgical robot on electromagnetic tracking in a clinical environment.
    Aguilera Saiz L; Groen HC; Heerink WJ; Ruers TJM
    J Robot Surg; 2024 Jan; 18(1):54. PubMed ID: 38280064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromagnetic tracking (EMT) technology for improved treatment quality assurance in interstitial brachytherapy.
    Kellermeier M; Herbolzheimer J; Kreppner S; Lotter M; Strnad V; Bert C
    J Appl Clin Med Phys; 2017 Jan; 18(1):211-222. PubMed ID: 28291934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A software solution to dynamically reduce metallic distortions of electromagnetic tracking systems for image-guided surgery.
    Li M; Hansen C; Rose G
    Int J Comput Assist Radiol Surg; 2017 Sep; 12(9):1621-1633. PubMed ID: 28258402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromagnetically tracked personalized templates for surgical navigation.
    Dickinson AWL; Zec ML; Pichora DR; Rasquinha BJ; Ellis RE
    Int J Comput Assist Radiol Surg; 2017 Jun; 12(6):1049-1058. PubMed ID: 28332159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time catheter tracking for high-dose-rate prostate brachytherapy using an electromagnetic 3D-guidance device: a preliminary performance study.
    Zhou J; Sebastian E; Mangona V; Yan D
    Med Phys; 2013 Feb; 40(2):021716. PubMed ID: 23387739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a miniature electromagnetic position tracker.
    Hummel J; Figl M; Kollmann C; Bergmann H; Birkfellner W
    Med Phys; 2002 Oct; 29(10):2205-12. PubMed ID: 12408292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy assessment of wireless transponder tracking in the operating room environment.
    Eppenga R; Kuhlmann K; Ruers T; Nijkamp J
    Int J Comput Assist Radiol Surg; 2018 Dec; 13(12):1937-1948. PubMed ID: 30099659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of an electromagnetic position tracking device for measuring in vivo, dynamic joint kinematics.
    Schuler NB; Bey MJ; Shearn JT; Butler DL
    J Biomech; 2005 Oct; 38(10):2113-7. PubMed ID: 16084212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous Electromagnetic Tracking and Calibration for Dynamic Field Distortion Compensation.
    Sadjadi H; Hashtrudi-Zaad K; Fichtinger G
    IEEE Trans Biomed Eng; 2016 Aug; 63(8):1771-81. PubMed ID: 26595908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and rotational quality assurance of 6DOF patient tracking systems.
    Belcher AH; Liu X; Grelewicz Z; Wiersma RD
    Med Phys; 2016 Jun; 43(6):2785-2793. PubMed ID: 27277026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic tracking for TomoTherapy systems: gradiometer based methods to filter eddy-current magnetic fields.
    McGary JE; Xiong Z; Chen J
    Med Phys; 2013 Jul; 40(7):071705. PubMed ID: 23822409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast calibration of electromagnetically tracked oblique-viewing rigid endoscopes.
    Liu X; Rice CE; Shekhar R
    Int J Comput Assist Radiol Surg; 2017 Oct; 12(10):1685-1695. PubMed ID: 28623479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A low-cost tracked C-arm (TC-arm) upgrade system for versatile quantitative intraoperative imaging.
    Amiri S; Wilson DR; Masri BA; Anglin C
    Int J Comput Assist Radiol Surg; 2014 Jul; 9(4):695-711. PubMed ID: 24323400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.