These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 26811086)

  • 1. Lignin biosynthesis in wheat (Triticum aestivum L.): its response to waterlogging and association with hormonal levels.
    Nguyen TN; Son S; Jordan MC; Levin DB; Ayele BT
    BMC Plant Biol; 2016 Jan; 16():28. PubMed ID: 26811086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a cinnamoyl-CoA reductase that is associated with stem development in wheat.
    Ma QH
    J Exp Bot; 2007; 58(8):2011-21. PubMed ID: 17452751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of paclobutrazol: a strategy for inducing lodging resistance of wheat through mediation of plant height, stem physical strength, and lignin biosynthesis.
    Kamran M; Ahmad I; Wu X; Liu T; Ding R; Han Q
    Environ Sci Pollut Res Int; 2018 Oct; 25(29):29366-29378. PubMed ID: 30121770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the Role of PAL in Lignin Accumulation in Wheat (
    Feduraev P; Riabova A; Skrypnik L; Pungin A; Tokupova E; Maslennikov P; Chupakhina G
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat.
    Ma QH
    J Exp Bot; 2010 Jun; 61(10):2735-44. PubMed ID: 20400532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulation of lignin metabolism by plant densities and its relationship with lodging resistance in wheat.
    Zheng M; Chen J; Shi Y; Li Y; Yin Y; Yang D; Luo Y; Pang D; Xu X; Li W; Ni J; Wang Y; Wang Z; Li Y
    Sci Rep; 2017 Feb; 7():41805. PubMed ID: 28150816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical characterization of a cinnamoyl-CoA reductase from wheat.
    Ma QH; Tian B
    Biol Chem; 2005 Jun; 386(6):553-60. PubMed ID: 16006242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lignin synthesis and accumulation in barley cultivars differing in their resistance to lodging.
    Begović L; Abičić I; Lalić A; Lepeduš H; Cesar V; Leljak-Levanić D
    Plant Physiol Biochem; 2018 Dec; 133():142-148. PubMed ID: 30419464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double benefits of mechanical wounding in enhancing chilling tolerance and lodging resistance in wheat plants.
    Si T; Wang X; Huang M; Cai J; Zhou Q; Dai T; Jiang D
    Plant Biol (Stuttg); 2019 Sep; 21(5):813-824. PubMed ID: 30977948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical characterization of caffeoyl coenzyme A 3-O-methyltransferase from wheat.
    Ma QH; Luo HR
    Planta; 2015 Jul; 242(1):113-22. PubMed ID: 25854602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity.
    Anterola AM; Lewis NG
    Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis.
    Vanholme R; Storme V; Vanholme B; Sundin L; Christensen JH; Goeminne G; Halpin C; Rohde A; Morreel K; Boerjan W
    Plant Cell; 2012 Sep; 24(9):3506-29. PubMed ID: 23012438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A wheat MYB transcriptional repressor TaMyb1D regulates phenylpropanoid metabolism and enhances tolerance to drought and oxidative stresses in transgenic tobacco plants.
    Wei Q; Zhang F; Sun F; Luo Q; Wang R; Hu R; Chen M; Chang J; Yang G; He G
    Plant Sci; 2017 Dec; 265():112-123. PubMed ID: 29223332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis reveals response of differential wheat (Triticum aestivum L.) genotypes to oxygen deficiency stress.
    Pan R; He D; Xu L; Zhou M; Li C; Wu C; Xu Y; Zhang W
    BMC Genomics; 2019 Jan; 20(1):60. PubMed ID: 30658567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative proteomics analysis by DIGE and iTRAQ provides insight into the regulation of phenylpropanoids in maize.
    Robbins ML; Roy A; Wang PH; Gaffoor I; Sekhon RS; de O Buanafina MM; Rohila JS; Chopra S
    J Proteomics; 2013 Nov; 93():254-75. PubMed ID: 23811284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutive expression of a stabilized transcription factor group VII ethylene response factor enhances waterlogging tolerance in wheat without penalizing grain yield.
    Wei X; Xu H; Rong W; Ye X; Zhang Z
    Plant Cell Environ; 2019 May; 42(5):1471-1485. PubMed ID: 30566765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion.
    Bhuiyan NH; Selvaraj G; Wei Y; King J
    J Exp Bot; 2009; 60(2):509-21. PubMed ID: 19039100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of lignin composition by ectopic expressing wheat TaF5H1 led to decreased salt tolerance in transgenic Arabidopsis plants.
    Jia S; Liu X; Li X; Sun C; Cao X; Liu W; Guo G; Bi C
    J Plant Physiol; 2023 Aug; 287():153997. PubMed ID: 37302354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TaMYB4 cloned from wheat regulates lignin biosynthesis through negatively controlling the transcripts of both cinnamyl alcohol dehydrogenase and cinnamoyl-CoA reductase genes.
    Ma QH; Wang C; Zhu HH
    Biochimie; 2011 Jul; 93(7):1179-86. PubMed ID: 21536093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diverse expression pattern of wheat transcription factors against abiotic stresses in wheat species.
    Baloglu MC; Inal B; Kavas M; Unver T
    Gene; 2014 Oct; 550(1):117-22. PubMed ID: 25130909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.