These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 26811386)

  • 41. Spatiotemporal Analysis Reveals Overlap of Key Proepicardial Markers in the Developing Murine Heart.
    Lupu IE; Redpath AN; Smart N
    Stem Cell Reports; 2020 May; 14(5):770-787. PubMed ID: 32359445
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hand2 loss-of-function in Hand1-expressing cells reveals distinct roles in epicardial and coronary vessel development.
    Barnes RM; Firulli BA; VanDusen NJ; Morikawa Y; Conway SJ; Cserjesi P; Vincentz JW; Firulli AB
    Circ Res; 2011 Apr; 108(8):940-9. PubMed ID: 21350214
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Epicardium-derived cells are important for correct development of the Purkinje fibers in the avian heart.
    Eralp I; Lie-Venema H; Bax NA; Wijffels MC; Van Der Laarse A; Deruiter MC; Bogers AJ; Van Den Akker NM; Gourdie RG; Schalij MJ; Poelmann RE; Gittenberger-De Groot AC
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Dec; 288(12):1272-80. PubMed ID: 17075847
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sequential programs of retinoic acid synthesis in the myocardial and epicardial layers of the developing avian heart.
    Xavier-Neto J; Shapiro MD; Houghton L; Rosenthal N
    Dev Biol; 2000 Mar; 219(1):129-41. PubMed ID: 10677260
    [TBL] [Abstract][Full Text] [Related]  

  • 45. XPOX2-peroxidase expression and the XLURP-1 promoter reveal the site of embryonic myeloid cell development in Xenopus.
    Smith SJ; Kotecha S; Towers N; Latinkic BV; Mohun TJ
    Mech Dev; 2002 Sep; 117(1-2):173-86. PubMed ID: 12204257
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differential regulation of cell adhesive functions by integrin alpha subunit cytoplasmic tails in vivo.
    Na J; Marsden M; DeSimone DW
    J Cell Sci; 2003 Jun; 116(Pt 11):2333-43. PubMed ID: 12711704
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spatial restriction of alpha4 integrin phosphorylation regulates lamellipodial stability and alpha4beta1-dependent cell migration.
    Goldfinger LE; Han J; Kiosses WB; Howe AK; Ginsberg MH
    J Cell Biol; 2003 Aug; 162(4):731-41. PubMed ID: 12913113
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A role for serum response factor in coronary smooth muscle differentiation from proepicardial cells.
    Landerholm TE; Dong XR; Lu J; Belaguli NS; Schwartz RJ; Majesky MW
    Development; 1999 May; 126(10):2053-62. PubMed ID: 10207131
    [TBL] [Abstract][Full Text] [Related]  

  • 49. alpha4 integrin is expressed in a subset of cranial neural crest cells and in epicardial progenitor cells during early mouse development.
    Pinco KA; Liu S; Yang JT
    Mech Dev; 2001 Jan; 100(1):99-103. PubMed ID: 11118892
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential expression of non-muscle myosin heavy chain genes during Xenopus embryogenesis.
    Bhatia-Dey N; Taira M; Conti MA; Nooruddin H; Adelstein RS
    Mech Dev; 1998 Nov; 78(1-2):33-6. PubMed ID: 9858676
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Expression patterns of focal adhesion associated proteins in the developing retina.
    Li M; Sakaguchi DS
    Dev Dyn; 2002 Dec; 225(4):544-53. PubMed ID: 12454930
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Epicardial-like cells on the distal arterial end of the cardiac outflow tract do not derive from the proepicardium but are derivatives of the cephalic pericardium.
    Pérez-Pomares JM; Phelps A; Sedmerova M; Wessels A
    Dev Dyn; 2003 May; 227(1):56-68. PubMed ID: 12701099
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular cloning and developmental expression of the Xenopus homolog of integrin alpha 4.
    Whittaker CA; Desimone DW
    Ann N Y Acad Sci; 1998 Oct; 857():56-73. PubMed ID: 9917832
    [TBL] [Abstract][Full Text] [Related]  

  • 54. ET3/Ednrb2 signaling is critically involved in regulating melanophore migration in Xenopus.
    Kawasaki-Nishihara A; Nishihara D; Nakamura H; Yamamoto H
    Dev Dyn; 2011 Jun; 240(6):1454-66. PubMed ID: 21538684
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Islet-1 is required for ventral neuron survival in Xenopus.
    Shi Y; Zhao S; Li J; Mao B
    Biochem Biophys Res Commun; 2009 Oct; 388(3):506-10. PubMed ID: 19666005
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Function and regulation of FoxF1 during Xenopus gut development.
    Tseng HT; Shah R; Jamrich M
    Development; 2004 Aug; 131(15):3637-47. PubMed ID: 15229177
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Myocardial heterogeneity in permissiveness for epicardium-derived cells and endothelial precursor cells along the developing heart tube at the onset of coronary vascularization.
    Lie-Venema H; Eralp I; Maas S; Gittenberger-De Groot AC; Poelmann RE; DeRuiter MC
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Feb; 282(2):120-9. PubMed ID: 15627984
    [TBL] [Abstract][Full Text] [Related]  

  • 58. LIM-homeodomain genes as developmental and adult genetic markers of Xenopus forebrain functional subdivisions.
    Moreno N; Bachy I; Rétaux S; González A
    J Comp Neurol; 2004 Apr; 472(1):52-72. PubMed ID: 15024752
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lhx9 gene expression during early limb development in mice requires the FGF signalling pathway.
    Yang Y; Wilson MJ
    Gene Expr Patterns; 2015; 19(1-2):45-51. PubMed ID: 26220830
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Expression pattern of zcchc24 during early Xenopus development.
    Vitorino M; Correia E; Serralheiro AR; De-Jesus AC; Inácio JM; Belo JA
    Int J Dev Biol; 2014; 58(1):45-50. PubMed ID: 24860994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.