BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 26811473)

  • 1. Polarized light modulates light-dependent magnetic compass orientation in birds.
    Muheim R; Sjöberg S; Pinzon-Rodriguez A
    Proc Natl Acad Sci U S A; 2016 Feb; 113(6):1654-9. PubMed ID: 26811473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zebra finches have a light-dependent magnetic compass similar to migratory birds.
    Pinzon-Rodriguez A; Muheim R
    J Exp Biol; 2017 Apr; 220(Pt 7):1202-1209. PubMed ID: 28356366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression patterns of cryptochrome genes in avian retina suggest involvement of Cry4 in light-dependent magnetoreception.
    Pinzon-Rodriguez A; Bensch S; Muheim R
    J R Soc Interface; 2018 Mar; 15(140):. PubMed ID: 29593090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration of magnetic and celestial compass cues in migratory birds--a review of cue-conflict experiments.
    Muheim R; Moore FR; Phillips JB
    J Exp Biol; 2006 Jan; 209(Pt 1):2-17. PubMed ID: 16354773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. No response to linear polarization cues in operant conditioning experiments with zebra finches.
    Melgar J; Lind O; Muheim R
    J Exp Biol; 2015 Jul; 218(Pt 13):2049-54. PubMed ID: 25944924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-dependent magnetoreception in birds: the crucial step occurs in the dark.
    Wiltschko R; Ahmad M; Nießner C; Gehring D; Wiltschko W
    J R Soc Interface; 2016 May; 13(118):. PubMed ID: 27146685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A New View on an Old Debate: Type of Cue-Conflict Manipulation and Availability of Stars Can Explain the Discrepancies between Cue-Calibration Experiments with Migratory Songbirds.
    Sjöberg S; Muheim R
    Front Behav Neurosci; 2016; 10():29. PubMed ID: 26941631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of light-dependent magnetic compass orientation in urodele amphibian larvae.
    Diego-Rasilla FJ; Luengo RM; Phillips JB
    Behav Processes; 2015 Sep; 118():1-7. PubMed ID: 25981491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical compass behaviour at microtesla magnetic fields strengthens the radical pair hypothesis of avian magnetoreception.
    Kerpal C; Richert S; Storey JG; Pillai S; Liddell PA; Gust D; Mackenzie SR; Hore PJ; Timmel CR
    Nat Commun; 2019 Aug; 10(1):3707. PubMed ID: 31420558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensing magnetic directions in birds: radical pair processes involving cryptochrome.
    Wiltschko R; Wiltschko W
    Biosensors (Basel); 2014 Sep; 4(3):221-42. PubMed ID: 25587420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. White-throated sparrows calibrate their magnetic compass by polarized light cues during both autumn and spring migration.
    Muheim R; Phillips JB; Deutschlander ME
    J Exp Biol; 2009 Nov; 212(Pt 21):3466-72. PubMed ID: 19837888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A behavioral perspective on the biophysics of the light-dependent magnetic compass: a link between directional and spatial perception?
    Phillips JB; Muheim R; Jorge PE
    J Exp Biol; 2010 Oct; 213(Pt 19):3247-55. PubMed ID: 20833916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compass magnetoreception in birds arising from photo-induced radical pairs in rotationally disordered cryptochromes.
    Lau JC; Rodgers CT; Hore PJ
    J R Soc Interface; 2012 Dec; 9(77):3329-37. PubMed ID: 22977104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-dependent orientation responses in animals can be explained by a model of compass cue integration.
    Jensen KK
    J Theor Biol; 2010 Jan; 262(1):129-41. PubMed ID: 19766660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarized skylight does not calibrate the compass system of a migratory bat.
    Lindecke O; Voigt CC; Pētersons G; Holland RA
    Biol Lett; 2015 Sep; 11(9):20150525. PubMed ID: 26382077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two different types of light-dependent responses to magnetic fields in birds.
    Wiltschko R; Ritz T; Stapput K; Thalau P; Wiltschko W
    Curr Biol; 2005 Aug; 15(16):1518-23. PubMed ID: 16111946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The flexible migratory orientation system of the savannah sparrow (Passerculus sandwichensis).
    Able K; Able M
    J Exp Biol; 1996; 199(Pt 1):3-8. PubMed ID: 9317228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavioural and physiological mechanisms of polarized light sensitivity in birds.
    Muheim R
    Philos Trans R Soc Lond B Biol Sci; 2011 Mar; 366(1565):763-71. PubMed ID: 21282180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryptochrome expression in avian UV cones: revisiting the role of CRY1 as magnetoreceptor.
    Pinzon-Rodriguez A; Muheim R
    Sci Rep; 2021 Jun; 11(1):12683. PubMed ID: 34135416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing the properties of the radical-pair magnetoreceptor using pulsed photo-excitation timed with pulsed rf.
    Mouloudakis K; Kominis IK
    Biosystems; 2016 Sep; 147():35-9. PubMed ID: 27450635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.