These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Designing new surfactant peptides for binding to carbon nanotubes via computational approaches. Mansouri A; Mahnam K J Mol Graph Model; 2017 Jun; 74():61-72. PubMed ID: 28359959 [TBL] [Abstract][Full Text] [Related]
3. Stepwise design of non-covalent wrapping of large diameter carbon nanotubes by peptides. Chen X; Yu X; Liu Y; Zhang J J Mol Graph Model; 2013 Nov; 46():83-92. PubMed ID: 24177350 [TBL] [Abstract][Full Text] [Related]
4. Tracing chirality, diameter dependence, and temperature-controlling of single-walled carbon nanotube non-covalent functionalization by biologically compatible peptide: insights from molecular dynamics simulations. Tohidifar L; Hadipour NL J Mol Model; 2019 Aug; 25(9):274. PubMed ID: 31451939 [TBL] [Abstract][Full Text] [Related]
5. Modifying the electronic properties of single-walled carbon nanotubes using designed surfactant peptides. Samarajeewa DR; Dieckmann GR; Nielsen SO; Musselman IH Nanoscale; 2012 Aug; 4(15):4544-54. PubMed ID: 22699559 [TBL] [Abstract][Full Text] [Related]
6. Exploring the changes in the structure of α-helical peptides adsorbed onto a single walled carbon nanotube using classical molecular dynamics simulation. Balamurugan K; Gopalakrishnan R; Raman SS; Subramanian V J Phys Chem B; 2010 Nov; 114(44):14048-58. PubMed ID: 20923226 [TBL] [Abstract][Full Text] [Related]
7. Ranking the affinity of aromatic residues for carbon nanotubes by using designed surfactant peptides. Xie H; Becraft EJ; Baughman RH; Dalton AB; Dieckmann GR J Pept Sci; 2008 Feb; 14(2):139-51. PubMed ID: 18098328 [TBL] [Abstract][Full Text] [Related]
8. Arginine side chains as a dispersant for individual single-wall carbon nanotubes. Hirano A; Tanaka T; Kataura H; Kameda T Chemistry; 2014 Apr; 20(17):4922-30. PubMed ID: 24711170 [TBL] [Abstract][Full Text] [Related]
9. Effect of Sodium Dodecyl Sulfate Adsorption on the Behavior of Water inside Single Walled Carbon Nanotubes with Dissipative Particle Dynamics Simulation. Vo MD; Papavassiliou DV Molecules; 2016 Apr; 21(4):500. PubMed ID: 27092476 [TBL] [Abstract][Full Text] [Related]
10. Noncovalent Protein and Peptide Functionalization of Single-Walled Carbon Nanotubes for Biodelivery and Optical Sensing Applications. Antonucci A; Kupis-Rozmysłowicz J; Boghossian AA ACS Appl Mater Interfaces; 2017 Apr; 9(13):11321-11331. PubMed ID: 28299937 [TBL] [Abstract][Full Text] [Related]
11. Theoretical insights into the interaction mechanism between proteins and SWCNTs: adsorptions of tripeptides GXG on SWCNTs. Wang Y; Ai H J Phys Chem B; 2009 Jul; 113(28):9620-7. PubMed ID: 19548664 [TBL] [Abstract][Full Text] [Related]
12. Adsorption of plasma proteins onto PEGylated single-walled carbon nanotubes: The effects of protein shape, PEG size and grafting density. Lee H J Mol Graph Model; 2017 Aug; 75():1-8. PubMed ID: 28501530 [TBL] [Abstract][Full Text] [Related]
13. Restriction Enzyme Analysis of Double-Stranded DNA on Pristine Single-Walled Carbon Nanotubes. Wu SJ; Schuergers N; Lin KH; Gillen AJ; Corminboeuf C; Boghossian AA ACS Appl Mater Interfaces; 2018 Oct; 10(43):37386-37395. PubMed ID: 30277379 [TBL] [Abstract][Full Text] [Related]
14. Understanding the co-loading and releasing of doxorubicin and paclitaxel using chitosan functionalized single-walled carbon nanotubes by molecular dynamics simulations. Karnati KR; Wang Y Phys Chem Chem Phys; 2018 Apr; 20(14):9389-9400. PubMed ID: 29565091 [TBL] [Abstract][Full Text] [Related]
15. Critical roles of key domains in complete adsorption of Aβ peptide on single-walled carbon nanotubes: insights with point mutations and MD simulations. Jana AK; Jose JC; Sengupta N Phys Chem Chem Phys; 2013 Jan; 15(3):837-44. PubMed ID: 23203213 [TBL] [Abstract][Full Text] [Related]
16. Unzipping and binding of small interfering RNA with single walled carbon nanotube: a platform for small interfering RNA delivery. Santosh M; Panigrahi S; Bhattacharyya D; Sood AK; Maiti PK J Chem Phys; 2012 Feb; 136(6):065106. PubMed ID: 22360226 [TBL] [Abstract][Full Text] [Related]
17. Effects of hydroxylated carbon nanotubes on the aggregation of Aβ16-22 peptides: a combined simulation and experimental study. Xie L; Lin D; Luo Y; Li H; Yang X; Wei G Biophys J; 2014 Oct; 107(8):1930-1938. PubMed ID: 25418174 [TBL] [Abstract][Full Text] [Related]
18. Molecular dynamics study of a nanotube-binding amphiphilic helical peptide at different water/hydrophobic interfaces. Chiu CC; Dieckmann GR; Nielsen SO J Phys Chem B; 2008 Dec; 112(51):16326-33. PubMed ID: 19049390 [TBL] [Abstract][Full Text] [Related]