These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26811886)

  • 1. The fast and forceful kicking strike of the secretary bird.
    Portugal SJ; Murn CP; Sparkes EL; Daley MA
    Curr Biol; 2016 Jan; 26(2):R58-R59. PubMed ID: 26811886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do lizards and snakes really differ in their ability to take large prey? A study of relative prey mass and feeding tactics in lizards.
    Shine R; Thomas J
    Oecologia; 2005 Jul; 144(3):492-8. PubMed ID: 15891833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological convergence as a consequence of extreme functional demands: examples from the feeding system of natricine snakes.
    Herrel A; Vincent SE; Alfaro ME; VAN Wassenbergh S; Vanhooydonck B; Irschick DJ
    J Evol Biol; 2008 Sep; 21(5):1438-48. PubMed ID: 18547353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Debunking the viper's strike: harmless snakes kill a common assumption.
    Penning DA; Sawvel B; Moon BR
    Biol Lett; 2016 Mar; 12(3):20160011. PubMed ID: 26979562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparisons of aquatic versus terrestrial predatory strikes in the pitviper, Agkistrodon piscivorus.
    Vincent SE; Herrel A; Irschick DJ
    J Exp Zool A Comp Exp Biol; 2005 Jun; 303(6):476-88. PubMed ID: 15880763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foraging mode and evolution of strike-induced chemosensory searching in lizards.
    Cooper WE
    J Chem Ecol; 2003 Apr; 29(4):1013-26. PubMed ID: 12775158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanics of prey prehension in chameleons.
    Herrel A; Meyers JJ; Aerts P; Nishikawa KC
    J Exp Biol; 2000 Nov; 203(Pt 21):3255-63. PubMed ID: 11023845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetic and physiological correlates of prey handling and ingestion in lizards and snakes.
    Cruz-Neto AP; Andrade DV; Abe AS
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Mar; 128(3):515-33. PubMed ID: 11246042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotion, Energetics, Performance, and Behavior: A Mammalian Perspective on Lizards, and Vice Versa.
    Garland T; Albuquerque RL
    Integr Comp Biol; 2017 Aug; 57(2):252-266. PubMed ID: 28859413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Snake and bird predation drive the repeated convergent evolution of correlated life history traits and phenotype in the Izu Island Scincid lizard (Plestiodon latiscutatus).
    Brandley MC; Kuriyama T; Hasegawa M
    PLoS One; 2014; 9(3):e92233. PubMed ID: 24667496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexibility in locomotor-feeding integration during prey capture in varanid lizards: effects of prey size and velocity.
    Montuelle SJ; Herrel A; Libourel PA; Daillie S; Bels VL
    J Exp Biol; 2012 Nov; 215(Pt 21):3823-35. PubMed ID: 22899521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separating the effects of prey size and speed on the kinematics of prey capture in the omnivorous lizard Gerrhosaurus major.
    Montuelle SJ; Herrel A; Libourel PA; Reveret L; Bels VL
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Jul; 196(7):491-9. PubMed ID: 20521149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prey capture kinematics of ant-eating lizards.
    Meyers JJ; Herrel A
    J Exp Biol; 2005 Jan; 208(Pt 1):113-27. PubMed ID: 15601883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of locomotor approach on feeding kinematics in the green anole (Anolis carolinensis).
    Montuelle SJ; Daghfous G; Bels VL
    J Exp Zool A Ecol Genet Physiol; 2008 Nov; 309(9):563-7. PubMed ID: 18661471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Historical contingency and animal diets: the origins of egg eating in snakes.
    de Queiroz A; Rodriguez-Robles JA
    Am Nat; 2006 May; 167(5):684-94. PubMed ID: 16671012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Snakes as agents of evolutionary change in primate brains.
    Isbell LA
    J Hum Evol; 2006 Jul; 51(1):1-35. PubMed ID: 16545427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fang evolution in venomous snakes: Adaptation of 3D tooth shape to the biomechanical properties of their prey.
    Cleuren SGC; Hocking DP; Evans AR
    Evolution; 2021 Jun; 75(6):1377-1394. PubMed ID: 33904594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamics of frontal striking in aquatic snakes: drag, added mass, and the possible consequences for prey capture success.
    Segall M; Herrel A; Godoy-Diana R
    Bioinspir Biomim; 2019 Feb; 14(3):036005. PubMed ID: 30699386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of variation in feeding strike kinematics of juvenile ghost praying mantis (Phyllocrania paradoxa): are components of the strike stereotypic?
    Oufiero CE; Nguyen T; Sragner A; Ellis A
    J Exp Biol; 2016 Sep; 219(Pt 17):2733-42. PubMed ID: 27358472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertebrate neuroethology: definitions and paradigms.
    Ingle D; Crews D
    Annu Rev Neurosci; 1985; 8():457-94. PubMed ID: 3885831
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.