BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 2681195)

  • 1. Inactivation of Escherichia coli L-threonine dehydrogenase by 2,3-butanedione. Evidence for a catalytically essential arginine residue.
    Epperly BR; Dekker EE
    J Biol Chem; 1989 Nov; 264(31):18296-301. PubMed ID: 2681195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for an essential arginine residue in the active site of Escherichia coli 2-keto-4-hydroxyglutarate aldolase. Modification with 1,2-cyclohexanedione.
    Vlahos CJ; Ghalambor MA; Dekker EE
    J Biol Chem; 1985 May; 260(9):5480-5. PubMed ID: 3886656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of carbonyl reductase from human brain by phenylglyoxal and 2,3-butanedione: a comparison with aldehyde reductase and aldose reductase.
    Bohren KM; von Wartburg JP; Wermuth B
    Biochim Biophys Acta; 1987 Nov; 916(2):185-92. PubMed ID: 3118957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pigeon liver malic enzyme: involvement of an arginyl residue at the binding site for malate and its analogs.
    Vernon CM; Hsu RY
    Arch Biochem Biophys; 1983 Aug; 225(1):296-305. PubMed ID: 6614923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of Escherichia coli 2-amino-3-ketobutyrate CoA ligase by phenylglyoxal and identification of an active-site arginine peptide.
    Mukherjee JJ; Dekker EE
    Arch Biochem Biophys; 1992 Nov; 299(1):147-53. PubMed ID: 1444446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of L-lactate monooxygenase with 2,3-butanedione and phenylglyoxal.
    Peters RG; Jones WC; Cromartie TH
    Biochemistry; 1981 Apr; 20(9):2564-71. PubMed ID: 7236621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the active site residues in aromatic donor oxidation in horseradish peroxidase: involvement of an arginine and a tyrosine residue in aromatic donor binding.
    Adak S; Mazumder A; Banerjee RK
    Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):985-91. PubMed ID: 8615798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of crystalline tobacco ribulosebisphosphate carboxylase by modification of arginine residues with 2,3-butanedione and phenylglyoxal.
    Chollet R
    Biochim Biophys Acta; 1981 Apr; 658(2):177-90. PubMed ID: 7248300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of E. coli L-Asparaginase by reaction with 2,3-butanedione. Chemical modification of arginine and histidine residues.
    Petz D; Löffler HG; Schneider F
    Z Naturforsch C Biosci; 1979; 34(9-10):742-6. PubMed ID: 160698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UDP-glucose 4-epimerase from Saccharomyces fragilis. Presence of an essential arginine residue at the substrate-binding site of the enzyme.
    Mukherji S; Bhaduri A
    J Biol Chem; 1986 Apr; 261(10):4519-24. PubMed ID: 3957906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of essential arginine residues of pigeon liver malic enzyme.
    Chang GG; Huang TM
    Biochim Biophys Acta; 1981 Aug; 660(2):341-7. PubMed ID: 7284407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for an essential arginine residue at the active site of Escherichia coli acetate kinase.
    Wong SS; Wong LJ
    Biochim Biophys Acta; 1981 Jul; 660(1):142-7. PubMed ID: 6268170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction of neutral endopeptidase 24.11 (enkephalinase) with arginine reagents.
    Jackson DG; Hersh LB
    J Biol Chem; 1986 Jul; 261(19):8649-54. PubMed ID: 3522576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae.
    Malebrán LP; Cardemil E
    Biochim Biophys Acta; 1987 Oct; 915(3):385-92. PubMed ID: 3307926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for an essential arginine residue at the active site of ATP citrate lyase from rat liver.
    Ramakrishna S; Benjamin WB
    Biochem J; 1981 Jun; 195(3):735-43. PubMed ID: 7316981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical modification of arginine residues in the lactose repressor.
    Whitson PA; Matthews KS
    Biochemistry; 1987 Oct; 26(20):6502-7. PubMed ID: 3322382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady-state kinetics and the inactivation by 2,3-butanedione of the energy-independent transhydrogenase of Escherichia coli cell membranes.
    Homyk M; Bragg PD
    Biochim Biophys Acta; 1979 Dec; 571(2):201-17. PubMed ID: 389287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Role of amino acid arginine residues of bacterial formate dehydrogenase].
    Tishkov VI; Popov VO; Egorov AM
    Biokhimiia; 1980 Feb; 45(2):317-24. PubMed ID: 7388072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photochemical inactivation of human placental estradiol 17 beta-dehydrogenase in the presence of 2,3-butanedione.
    Inano H; Ohba H; Tamaoki B
    J Steroid Biochem; 1983 Nov; 19(5):1617-22. PubMed ID: 6580513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protection of hexaprenyl-diphosphate synthase of Micrococcus luteus B-P 26 against inactivation by sulphydryl reagents and arginine-specific reagents.
    Yoshida I; Koyama T; Ogura K
    Biochim Biophys Acta; 1989 Apr; 995(2):138-43. PubMed ID: 2539196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.