BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 26812082)

  • 1. A DFT-based toxicity QSAR study of aromatic hydrocarbons to Vibrio fischeri: Consideration of aqueous freely dissolved concentration.
    Wang Y; Yang X; Wang J; Cong Y; Mu J; Jin F
    J Hazard Mater; 2016 May; 308():149-56. PubMed ID: 26812082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling photoinduced toxicity of PAHs based on DFT-calculated descriptors.
    Wang Y; Chen J; Li F; Qin H; Qiao X; Hao C
    Chemosphere; 2009 Aug; 76(7):999-1005. PubMed ID: 19427664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity cutoff of aromatic hydrocarbons for luminescence inhibition of Vibrio fischeri.
    Lee SY; Kang HJ; Kwon JH
    Ecotoxicol Environ Saf; 2013 Aug; 94():116-22. PubMed ID: 23731864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative structure-activity relationship for the photoinduced toxicity of polycyclic aromatic hydrocarbons to the luminescent bacteria Vibrio fischeri.
    El-Alawi YS; Huang XD; Dixon DG; Greenberg BM
    Environ Toxicol Chem; 2002 Oct; 21(10):2225-32. PubMed ID: 12371502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarizability and aromaticity index govern AhR-mediated potencies of PAHs: A QSAR with consideration of freely dissolved concentrations.
    Wang Y; Yang X; Zhang S; Guo TL; Zhao B; Du Q; Chen J
    Chemosphere; 2021 Apr; 268():129343. PubMed ID: 33359989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physico-chemical properties and toxicity of alkylated polycyclic aromatic hydrocarbons.
    Kang HJ; Lee SY; Kwon JH
    J Hazard Mater; 2016 Jul; 312():200-207. PubMed ID: 27037474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General baseline toxicity QSAR for nonpolar, polar and ionisable chemicals and their mixtures in the bioluminescence inhibition assay with Aliivibrio fischeri.
    Escher BI; Baumer A; Bittermann K; Henneberger L; König M; Kühnert C; Klüver N
    Environ Sci Process Impacts; 2017 Mar; 19(3):414-428. PubMed ID: 28197603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSAR studies on the depuration rates of polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers and polychlorinated biphenyls in mussels (Elliptio complanata).
    Li F; Liu X; Zhang L; You L; Wu H; Li X; Zhao J; Yu J
    SAR QSAR Environ Res; 2011; 22(5-6):561-73. PubMed ID: 21732892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of aromatic pollutants and photooxidative intermediates in water: A QSAR study.
    Cvetnic M; Juretic Perisic D; Kovacic M; Ukic S; Bolanca T; Rasulev B; Kusic H; Loncaric Bozic A
    Ecotoxicol Environ Saf; 2019 Mar; 169():918-927. PubMed ID: 30597792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data evaluations and quantitative predictive models for vapor pressures of polycyclic aromatic hydrocarbons at different temperatures.
    Huang XY; Chen JW; Gao LN; Ding GH; Zhao YZ; Schramm KW
    SAR QSAR Environ Res; 2004 Apr; 15(2):115-25. PubMed ID: 15199947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncovalent interactions between hydroxylated polycyclic aromatic hydrocarbon and DNA: molecular docking and QSAR study.
    Li F; Li X; Liu X; Zhang L; You L; Zhao J; Wu H
    Environ Toxicol Pharmacol; 2011 Nov; 32(3):373-81. PubMed ID: 22004956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSPRs on photodegradation half-lives of atmospheric chlorinated polycyclic aromatic hydrocarbons associated with particulates.
    Niu J; Wang L; Yang Z
    Ecotoxicol Environ Saf; 2007 Feb; 66(2):272-7. PubMed ID: 16618506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A best​ comprehension about the toxicity of phenylsulfonyl carboxylates in Vibrio fischeri using quantitative structure activity/property relationship methods.
    de Melo EB; Martins JP; Miranda EH; Ferreira MM
    J Hazard Mater; 2016 Mar; 304():233-41. PubMed ID: 26551227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does electron-correlation has any role in the quantitative structure-activity relationships?
    Vikas ; Reenu ; Chayawan
    J Mol Graph Model; 2013 May; 42():7-16. PubMed ID: 23501159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of ecotoxicity of heavy crude oil: contribution of measured components.
    Kang HJ; Lee SY; Roh JY; Yim UH; Shim WJ; Kwon JH
    Environ Sci Technol; 2014; 48(5):2962-70. PubMed ID: 24490901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative structure-activity relationship (QSAR) models for polycyclic aromatic hydrocarbons (PAHs) dissipation in rhizosphere based on molecular structure and effect size.
    Ma B; Chen H; Xu M; Hayat T; He Y; Xu J
    Environ Pollut; 2010 Aug; 158(8):2773-7. PubMed ID: 20537774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative structure-activity relationship approach for assessing toxicity of mixture of organic compounds.
    Chang CM; Ou YH; Liu TC; Lu SY; Wang MK
    SAR QSAR Environ Res; 2016 Jun; 27(6):441-53. PubMed ID: 27426856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing toxicity through electrophilicity.
    Roy DR; Sarkar U; Chattaraj PK; Mitra A; Padmanabhan J; Parthasarathi R; Subramanian V; Van Damme S; Bultinck P
    Mol Divers; 2006 May; 10(2):119-31. PubMed ID: 16763875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of predictive models for silicone rubber-water partition coefficients of hydrophobic organic contaminants.
    Sun H; Yang X; Li X; Jin X
    Environ Sci Process Impacts; 2019 Dec; 21(12):2020-2030. PubMed ID: 31589229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the ecotoxicity of ionic liquids towards Vibrio fischeri using genetic function approximation and least squares support vector machine.
    Ma S; Lv M; Deng F; Zhang X; Zhai H; Lv W
    J Hazard Mater; 2015; 283():591-8. PubMed ID: 25464300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.