These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26812109)

  • 1. Existence of hydroxylated MWCNTs demotes the catalysis effect of amylases against starch degradation.
    Sekar G; Sivakumar A; Mukherjee A; Chandrasekaran N
    Int J Biol Macromol; 2016 May; 86():250-61. PubMed ID: 26812109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive spectroscopic studies on the interaction of biomolecules with surfactant detached multi-walled carbon nanotubes.
    Sekar G; Mukherjee A; Chandrasekaran N
    Colloids Surf B Biointerfaces; 2015 Apr; 128():315-321. PubMed ID: 25707749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding studies of hydroxylated Multi-Walled Carbon Nanotubes to hemoglobin, gamma globulin and transferrin.
    Sekar G; Kandiyil ST; Sivakumar A; Mukherjee A; Chandrasekaran N
    J Photochem Photobiol B; 2015 Dec; 153():222-32. PubMed ID: 26432959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prion like behavior of HSA-hydroxylated MWCNT interface.
    Sekar G; Sivakumar A; Mukherjee A; Chandrasekaran N
    J Photochem Photobiol B; 2016 Aug; 161():411-21. PubMed ID: 27314539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Enzyme Immobilization on Carbon Nanotubes via Metal-Organic Frameworks for Large-Substrate Biocatalysis.
    Neupane S; Patnode K; Li H; Baryeh K; Liu G; Hu J; Chen B; Pan Y; Yang Z
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):12133-12141. PubMed ID: 30839195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional characteristics, wettability properties and cytotoxic effect of starch film incorporated with multi-walled and hydroxylated multi-walled carbon nanotubes.
    Shahbazi M; Rajabzadeh G; Sotoodeh S
    Int J Biol Macromol; 2017 Nov; 104(Pt A):597-605. PubMed ID: 28601644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. α-Amylase@Ferria: Magnetic Nanocomposites with Enhanced Thermal Stability for Starch Hydrolysis.
    Astafyeva BV; Shapovalova OE; Drozdov AS; Vinogradov VV
    J Agric Food Chem; 2018 Aug; 66(30):8054-8060. PubMed ID: 29976057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insight into the binding interaction of hydroxylated carbon nanotubes with bovine serum albumin.
    Guan Y; Zhang H; Wang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():556-63. PubMed ID: 24508894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amylase-functionalized mesoporous silica thin films as robust biocatalyst platforms.
    Bellino MG; Regazzoni AE; Soler-Illia GJ
    ACS Appl Mater Interfaces; 2010 Feb; 2(2):360-5. PubMed ID: 20356181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of activity and stability of papain by adsorption on multi-wall carbon nanotubes.
    Homaei A; Samari F
    Int J Biol Macromol; 2017 Dec; 105(Pt 3):1630-1635. PubMed ID: 28223134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermostable α-amylase immobilization: Enhanced stability and performance for starch biocatalysis.
    Kumar GS; Rather GM; Gurramkonda C; Reddy BR
    Biotechnol Appl Biochem; 2016; 63(1):57-66. PubMed ID: 25604037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation.
    Cockburn D; Nielsen MM; Christiansen C; Andersen JM; Rannes JB; Blennow A; Svensson B
    Int J Biol Macromol; 2015 Apr; 75():338-45. PubMed ID: 25661878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Candida rugosa Lipase Immobilized onto Acid-Functionalized Multi-walled Carbon Nanotubes for Sustainable Production of Methyl Oleate.
    Che Marzuki NH; Mahat NA; Huyop F; Buang NA; Wahab RA
    Appl Biochem Biotechnol; 2015 Oct; 177(4):967-84. PubMed ID: 26267406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-enzyme immobilization approach using carbon nanotubes/silica as support.
    Du K; Sun J; Zhou X; Feng W; Jiang X; Ji P
    Biotechnol Prog; 2015; 31(1):42-7. PubMed ID: 25378233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The effect of Bacillus subtilis alpha-amylase on starch].
    Bendetskiĭ KM; Iarovenko VL
    Biokhimiia; 1973; 38(3):568-72. PubMed ID: 4205437
    [No Abstract]   [Full Text] [Related]  

  • 16. Multispectroscopy analysis of polystyrene nanoplastic interaction with diastase α-amylase.
    Azhagesan A; Chandrasekaran N; Mukherjee A
    Ecotoxicol Environ Saf; 2022 Dec; 247():114226. PubMed ID: 36306622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Alpha-amylases of Bacillus subtilis].
    Varbanets' LD; Myshak KV; Matseliukh OV; Hudzenko OV; Safronova LA; Prykhod'ko VO
    Mikrobiol Z; 2006; 68(2):30-8. PubMed ID: 16786626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The synergetic effect of starch and alpha amylase on the biodegradation of n-alkanes.
    Karimi M; Biria D
    Chemosphere; 2016 Jun; 152():166-72. PubMed ID: 26971168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Light-Activated Microheater for the Remote Control of Enzymatic Catalysis.
    Cao Y; Wang Z; Liao S; Wang J; Wang Y
    Chemistry; 2016 Jan; 22(3):1152-8. PubMed ID: 26603499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron oxide filled magnetic carbon nanotube-enzyme conjugates for recycling of amyloglucosidase: toward useful applications in biofuel production process.
    Goh WJ; Makam VS; Hu J; Kang L; Zheng M; Yoong SL; Udalagama CN; Pastorin G
    Langmuir; 2012 Dec; 28(49):16864-73. PubMed ID: 23148719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.