BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26812258)

  • 1. QMRA for Drinking Water: 2. The Effect of Pathogen Clustering in Single-Hit Dose-Response Models.
    Nilsen V; Wyller J
    Risk Anal; 2016 Jan; 36(1):163-81. PubMed ID: 26812258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QMRA for Drinking Water: 1. Revisiting the Mathematical Structure of Single-Hit Dose-Response Models.
    Nilsen V; Wyller J
    Risk Anal; 2016 Jan; 36(1):145-62. PubMed ID: 26812257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Generalized QMRA Beta-Poisson Dose-Response Model.
    Xie G; Roiko A; Stratton H; Lemckert C; Dunn PK; Mengersen K
    Risk Anal; 2016 Oct; 36(10):1948-1958. PubMed ID: 26849688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Risk Predicted by Multiple Norovirus Dose-Response Models and Implications for Quantitative Microbial Risk Assessment.
    Van Abel N; Schoen ME; Kissel JC; Meschke JS
    Risk Anal; 2017 Feb; 37(2):245-264. PubMed ID: 27285380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guidelines for Use of the Approximate Beta-Poisson Dose-Response Model.
    Xie G; Roiko A; Stratton H; Lemckert C; Dunn PK; Mengersen K
    Risk Anal; 2017 Jul; 37(7):1388-1402. PubMed ID: 27704592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Beta Poisson dose-response model is not a single-hit model.
    Teunis PF; Havelaar AH
    Risk Anal; 2000 Aug; 20(4):513-20. PubMed ID: 11051074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing the theoretical foundations of the exponential and beta-Poisson dose-response models to quantify parameter uncertainty using Markov Chain Monte Carlo.
    Schmidt PJ; Pintar KD; Fazil AM; Topp E
    Risk Anal; 2013 Sep; 33(9):1677-93. PubMed ID: 23311599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of microbial count distributions on human health risk estimates.
    Duarte AS; Nauta MJ
    Int J Food Microbiol; 2015 Feb; 195():48-57. PubMed ID: 25506750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discharge-based QMRA for estimation of public health risks from exposure to stormwater-borne pathogens in recreational waters in the United States.
    McBride GB; Stott R; Miller W; Bambic D; Wuertz S
    Water Res; 2013 Sep; 47(14):5282-97. PubMed ID: 23863377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate-driven QMRA model for selected water supply systems in Norway accounting for raw water sources and treatment processes.
    Mohammed H; Seidu R
    Sci Total Environ; 2019 Apr; 660():306-320. PubMed ID: 30640099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Count data distributions and their zero-modified equivalents as a framework for modelling microbial data with a relatively high occurrence of zero counts.
    Gonzales-Barron U; Kerr M; Sheridan JJ; Butler F
    Int J Food Microbiol; 2010 Jan; 136(3):268-77. PubMed ID: 19913934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QMRAspot: a tool for Quantitative Microbial Risk Assessment from surface water to potable water.
    Schijven JF; Teunis PF; Rutjes SA; Bouwknegt M; de Roda Husman AM
    Water Res; 2011 Nov; 45(17):5564-76. PubMed ID: 21885080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QMRA and water safety management: review of application in drinking water systems.
    Petterson SR; Ashbolt NJ
    J Water Health; 2016 Aug; 14(4):571-89. PubMed ID: 27441853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical recovery of protozoan enumeration methods: have drinking water QMRA models corrected or created bias?
    Schmidt PJ; Emelko MB; Thompson ME
    Water Res; 2013 May; 47(7):2399-408. PubMed ID: 23481286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of pathogen inactivation efficacy by free chlorine disinfection of drinking water for QMRA.
    Petterson SR; Stenström TA
    J Water Health; 2015 Sep; 13(3):625-44. PubMed ID: 26322749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial risk assessment of drinking water based on hydrodynamic modelling of pathogen concentrations in source water.
    Sokolova E; Petterson SR; Dienus O; Nyström F; Lindgren PE; Pettersson TJ
    Sci Total Environ; 2015 Sep; 526():177-86. PubMed ID: 25931024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new theoretical discrete growth distribution with verification for microbial counts in water.
    Englehardt J; Swartout J; Loewenstine C
    Risk Anal; 2009 Jun; 29(6):841-56. PubMed ID: 19187482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current assumptions for quantitative microbial risk assessment (QMRA) of Norovirus contamination of drinking water catchments due to recreational activities: an update.
    Deere D; Ryan U
    J Water Health; 2022 Oct; 20(10):1543-1557. PubMed ID: 36308498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantitative microbial risk assessment model for Legionnaires' disease: animal model selection and dose-response modeling.
    Armstrong TW; Haas CN
    Risk Anal; 2007 Dec; 27(6):1581-96. PubMed ID: 18093054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation of quantitative microbial risk assessment (QMRA) for public drinking water supplies: Systematic review.
    Owens CEL; Angles ML; Cox PT; Byleveld PM; Osborne NJ; Rahman MB
    Water Res; 2020 May; 174():115614. PubMed ID: 32087414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.