These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 26812475)
1. Surface Enhanced Raman Scattering Based in Situ Hybridization Strategy for Telomere Length Assessment. Zong S; Chen C; Wang Z; Zhang Y; Cui Y ACS Nano; 2016 Feb; 10(2):2950-9. PubMed ID: 26812475 [TBL] [Abstract][Full Text] [Related]
2. Assessing telomere length using surface enhanced Raman scattering. Zong S; Wang Z; Chen H; Cui Y Sci Rep; 2014 Nov; 4():6977. PubMed ID: 25381775 [TBL] [Abstract][Full Text] [Related]
3. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method. Lin M; Wang Y; Sun X; Wang W; Chen L ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901 [TBL] [Abstract][Full Text] [Related]
4. Multiplex micro-SERS imaging of cancer-related markers in cells and tissues using poly(allylamine)-coated Au@Ag nanoprobes. Verdin A; Malherbe C; Müller WH; Bertrand V; Eppe G Anal Bioanal Chem; 2020 Nov; 412(28):7739-7755. PubMed ID: 32910264 [TBL] [Abstract][Full Text] [Related]
6. Surface-enhanced Raman scattering imaging using noble metal nanoparticles. Wilson AJ; Willets KA Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):180-9. PubMed ID: 23335562 [TBL] [Abstract][Full Text] [Related]
7. Micron-sized surface enhanced Raman scattering reporter/fluorescence probe encoded colloidal microspheres for sensitive DNA detection. You L; Li R; Dong X; Wang F; Guo J; Wang C J Colloid Interface Sci; 2017 Feb; 488():109-117. PubMed ID: 27821331 [TBL] [Abstract][Full Text] [Related]
8. Nuclear targeted nanoprobe for single living cell detection by surface-enhanced Raman scattering. Xie W; Wang L; Zhang Y; Su L; Shen A; Tan J; Hu J Bioconjug Chem; 2009 Apr; 20(4):768-73. PubMed ID: 19267459 [TBL] [Abstract][Full Text] [Related]
9. SERS-fluorescence joint spectral encoded magnetic nanoprobes for multiplex cancer cell separation. Wang Z; Zong S; Chen H; Wang C; Xu S; Cui Y Adv Healthc Mater; 2014 Nov; 3(11):1889-97. PubMed ID: 24862088 [TBL] [Abstract][Full Text] [Related]
10. Detection and quantification of alternative splice sites in Arabidopsis genes AtDCL2 and AtPTB2 with highly sensitive surface enhanced Raman spectroscopy (SERS) and gold nanoprobes. Kadam US; Schulz B; Irudayaraj J FEBS Lett; 2014 May; 588(9):1637-43. PubMed ID: 24631541 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Hu Y; Liao J; Wang D; Li G Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316 [TBL] [Abstract][Full Text] [Related]
12. Surface-enhanced Raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling. Qian X; Zhou X; Nie S J Am Chem Soc; 2008 Nov; 130(45):14934-5. PubMed ID: 18937463 [TBL] [Abstract][Full Text] [Related]
13. On-line SERS detection of single bacterium using novel SERS nanoprobes and a microfluidic dielectrophoresis device. Lin HY; Huang CH; Hsieh WH; Liu LH; Lin YC; Chu CC; Wang ST; Kuo IT; Chau LK; Yang CY Small; 2014 Nov; 10(22):4700-10. PubMed ID: 25115777 [TBL] [Abstract][Full Text] [Related]
14. Virus templated gold nanocube chain for SERS nanoprobe. Lee HE; Lee HK; Chang H; Ahn HY; Erdene N; Lee HY; Lee YS; Jeong DH; Chung J; Nam KT Small; 2014 Aug; 10(15):3007-11. PubMed ID: 24700483 [TBL] [Abstract][Full Text] [Related]
15. Rolling-circle amplification detection of thrombin using surface-enhanced Raman spectroscopy with core-shell nanoparticle probe. Li X; Wang L; Li C Chemistry; 2015 Apr; 21(18):6817-22. PubMed ID: 25766032 [TBL] [Abstract][Full Text] [Related]
16. Colorimetry and SERS dual-mode detection of telomerase activity: combining rapid screening with high sensitivity. Zong S; Wang Z; Chen H; Hu G; Liu M; Chen P; Cui Y Nanoscale; 2014; 6(3):1808-16. PubMed ID: 24356868 [TBL] [Abstract][Full Text] [Related]
17. A phenylboronate-based SERS nanoprobe for detection and imaging of intracellular peroxynitrite. Chen HY; Guo D; Gan ZF; Jiang L; Chang S; Li DW Mikrochim Acta; 2018 Dec; 186(1):11. PubMed ID: 30535866 [TBL] [Abstract][Full Text] [Related]
18. Multiplexing with SERS labels using mixed SAMs of Raman reporter molecules. Gellner M; Kömpe K; Schlücker S Anal Bioanal Chem; 2009 Aug; 394(7):1839-44. PubMed ID: 19543719 [TBL] [Abstract][Full Text] [Related]
19. Creating SERS hot spots on MoS(2) nanosheets with in situ grown gold nanoparticles. Su S; Zhang C; Yuwen L; Chao J; Zuo X; Liu X; Song C; Fan C; Wang L ACS Appl Mater Interfaces; 2014; 6(21):18735-41. PubMed ID: 25310705 [TBL] [Abstract][Full Text] [Related]
20. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets. Liu Y; Wu P ACS Appl Mater Interfaces; 2013 Jun; 5(12):5832-44. PubMed ID: 23734937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]