These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26812527)

  • 1. Trimethylphosphine-Assisted Surface Fingerprinting of Metal Oxide Nanoparticle by (31)P Solid-State NMR: A Zinc Oxide Case Study.
    Peng YK; Ye L; Qu J; Zhang L; Fu Y; Teixeira IF; McPherson IJ; He H; Tsang SC
    J Am Chem Soc; 2016 Feb; 138(7):2225-34. PubMed ID: 26812527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Fingerprinting of Faceted Metal Oxides and Porous Zeolite Catalysts by Probe-Assisted Solid-State NMR Approaches.
    Yi X; Peng YK; Chen W; Liu Z; Zheng A
    Acc Chem Res; 2021 May; 54(10):2421-2433. PubMed ID: 33856775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules.
    Zheng A; Huang SJ; Liu SB; Deng F
    Phys Chem Chem Phys; 2011 Sep; 13(33):14889-901. PubMed ID: 21785784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acidity characterization of heterogeneous catalysts by solid-state NMR spectroscopy using probe molecules.
    Zheng A; Liu SB; Deng F
    Solid State Nucl Magn Reson; 2013; 55-56():12-27. PubMed ID: 24094848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface acidity of tin dioxide nanomaterials revealed with
    Zhang W; Lin Z; Li H; Wang F; Wen Y; Xu M; Wang Y; Ke X; Xia X; Chen J; Peng L
    RSC Adv; 2021 Jul; 11(40):25004-25009. PubMed ID: 35481043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-energy-surface engineered metal oxide micro- and nanocrystallites and their applications.
    Kuang Q; Wang X; Jiang Z; Xie Z; Zheng L
    Acc Chem Res; 2014 Feb; 47(2):308-18. PubMed ID: 24341353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the nature of Lewis acid sites on oxide surfaces with
    Maleki F; Pacchioni G
    Phys Chem Chem Phys; 2022 Aug; 24(33):19773-19782. PubMed ID: 35972443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the chemical nature of active surface sites present on bulk mixed metal oxide catalysts.
    Wachs IE; Jehng JM; Ueda W
    J Phys Chem B; 2005 Feb; 109(6):2275-84. PubMed ID: 16851220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: an in vitro comparative study.
    Singh P; Nanda A
    Int J Cosmet Sci; 2014 Jun; 36(3):273-83. PubMed ID: 24575878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic coatings for environmental applications.
    Allen NS; Edge M; Sandoval G; Verran J; Stratton J; Maltby J
    Photochem Photobiol; 2005; 81(2):279-90. PubMed ID: 15279507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unveiling the Surface Structure of ZnO Nanorods and H
    Song B; Li Y; Wu XP; Wang F; Lin M; Sun Y; Jia AP; Ning X; Jin L; Ke X; Yu Z; Yang G; Hou W; Ding W; Gong XQ; Peng L
    J Am Chem Soc; 2022 Dec; 144(51):23340-23351. PubMed ID: 36512749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates.
    Nakka L; Molinari JE; Wachs IE
    J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vacancy-Mediated Processes in the Oxidation of CO on PdO(101).
    Weaver JF; Zhang F; Pan L; Li T; Asthagiri A
    Acc Chem Res; 2015 May; 48(5):1515-23. PubMed ID: 25933250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology.
    Wang ZL
    Annu Rev Phys Chem; 2004; 55():159-96. PubMed ID: 15117251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IR spectroscopic investigations of chemical and photochemical reactions on metal oxides: bridging the materials gap.
    Wang Y; Wöll C
    Chem Soc Rev; 2017 Apr; 46(7):1875-1932. PubMed ID: 28221385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, characterization, and photocatalytic activities of titanate nanotubes surface-decorated by zinc oxide nanoparticles.
    Wang LS; Xiao MW; Huang XJ; Wu YD
    J Hazard Mater; 2009 Jan; 161(1):49-54. PubMed ID: 18456402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.