These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 26812586)

  • 1. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals.
    Gauthier L; Bonnin-Verdal MN; Marchegay G; Pinson-Gadais L; Ducos C; Richard-Forget F; Atanasova-Penichon V
    Int J Food Microbiol; 2016 Mar; 221():61-68. PubMed ID: 26812586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlorogenic acid and maize ear rot resistance: a dynamic study investigating Fusarium graminearum development, deoxynivalenol production, and phenolic acid accumulation.
    Atanasova-Penichon V; Pons S; Pinson-Gadais L; Picot A; Marchegay G; Bonnin-Verdal MN; Ducos C; Barreau C; Roucolle J; Sehabiague P; Carolo P; Richard-Forget F
    Mol Plant Microbe Interact; 2012 Dec; 25(12):1605-16. PubMed ID: 23035912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. trans-Cinnamic and Chlorogenic Acids Affect the Secondary Metabolic Profiles and Ergosterol Biosynthesis by Fusarium culmorum and F. graminearum Sensu Stricto.
    Kulik T; Stuper-Szablewska K; Bilska K; Buśko M; Ostrowska-Kołodziejczak A; Załuski D; Perkowski J
    Toxins (Basel); 2017 Jun; 9(7):. PubMed ID: 28640190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolomics to Decipher the Chemical Defense of Cereals against Fusarium graminearum and Deoxynivalenol Accumulation.
    Gauthier L; Atanasova-Penichon V; Chéreau S; Richard-Forget F
    Int J Mol Sci; 2015 Oct; 16(10):24839-72. PubMed ID: 26492237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) inhibits trichothecene production by Fusarium graminearum through suppression of Tri6 expression.
    Etzerodt T; Maeda K; Nakajima Y; Laursen B; Fomsgaard IS; Kimura M
    Int J Food Microbiol; 2015 Dec; 214():123-128. PubMed ID: 26276561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate specificities of Fusarium biosynthetic enzymes explain the genetic basis of a mixed chemotype producing both deoxynivalenol and nivalenol-type trichothecenes.
    Maeda K; Tanaka Y; Matsuyama M; Sato M; Sadamatsu K; Suzuki T; Matsui K; Nakajima Y; Tokai T; Kanamaru K; Ohsato S; Kobayashi T; Fujimura M; Nishiuchi T; Takahashi-Ando N; Kimura M
    Int J Food Microbiol; 2020 May; 320():108532. PubMed ID: 32004825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioguided isolation, characterization, and biotransformation by Fusarium verticillioides of maize kernel compounds that inhibit fumonisin production.
    Atanasova-Penichon V; Bernillon S; Marchegay G; Lornac A; Pinson-Gadais L; Ponts N; Zehraoui E; Barreau C; Richard-Forget F
    Mol Plant Microbe Interact; 2014 Oct; 27(10):1148-58. PubMed ID: 25014591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycotoxin Biosynthesis and Central Metabolism Are Two Interlinked Pathways in Fusarium graminearum, as Demonstrated by the Extensive Metabolic Changes Induced by Caffeic Acid Exposure.
    Atanasova-Penichon V; Legoahec L; Bernillon S; Deborde C; Maucourt M; Verdal-Bonnin MN; Pinson-Gadais L; Ponts N; Moing A; Richard-Forget F
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29427428
    [No Abstract]   [Full Text] [Related]  

  • 9. TRI12 based quantitative real-time PCR assays reveal the distribution of trichothecene genotypes of F. graminearum and F. culmorum isolates in Danish small grain cereals.
    Nielsen LK; Jensen JD; Rodríguez A; Jørgensen LN; Justesen AF
    Int J Food Microbiol; 2012 Jul; 157(3):384-92. PubMed ID: 22781579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifungal effect of engineered silver nanoparticles on phytopathogenic and toxigenic Fusarium spp. and their impact on mycotoxin accumulation.
    Tarazona A; Gómez JV; Mateo EM; Jiménez M; Mateo F
    Int J Food Microbiol; 2019 Oct; 306():108259. PubMed ID: 31349113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trichothecenes and Fumonisins: Key Players in
    Perochon A; Doohan FM
    Toxins (Basel); 2024 Feb; 16(2):. PubMed ID: 38393168
    [No Abstract]   [Full Text] [Related]  

  • 12. Inhibition of Fusarium graminearum growth and mycotoxin production by phenolic extract from Spirulina sp.
    Pagnussatt FA; Del Ponte EM; Garda-Buffon J; Badiale-Furlong E
    Pestic Biochem Physiol; 2014 Jan; 108():21-6. PubMed ID: 24485311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial Inhibition of Fusarium Pathogens and Biological Modification of Trichothecenes in Cereal Grains.
    Wachowska U; Packa D; Wiwart M
    Toxins (Basel); 2017 Dec; 9(12):. PubMed ID: 29261142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of trichothecene mycotoxins by Fusarium graminearum and Fusarium culmorum on barley and wheat.
    Mirocha CJ; Xie W; Xu Y; Wilcoxson RD; Woodward RP; Etebarian RH; Behele G
    Mycopathologia; 1994 Oct; 128(1):19-23. PubMed ID: 7708088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The prevalence of selected genes involved in the biosynthesis of trichothecenes assessed with the specific PCR tests in Fusarium spp. isolated from cereals in southern Poland.
    Wolny-Koładka KA
    J Environ Sci Health B; 2015; 50(5):361-7. PubMed ID: 25826104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Phenolic Acids on the Growth and Production of T-2 and HT-2 Toxins by Fusarium langsethiae and F. sporotrichioides.
    Ferruz E; Atanasova-Pénichon V; Bonnin-Verdal MN; Marchegay G; Pinson-Gadais L; Ducos C; Lorán S; Ariño A; Barreau C; Richard-Forget F
    Molecules; 2016 Apr; 21(4):449. PubMed ID: 27049379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fungal Endophytes Control
    F Abdallah M; De Boevre M; Landschoot S; De Saeger S; Haesaert G; Audenaert K
    Toxins (Basel); 2018 Nov; 10(12):. PubMed ID: 30477214
    [No Abstract]   [Full Text] [Related]  

  • 18. Inhibition of Fusarium Growth and Mycotoxin Production in Culture Medium and in Maize Kernels by Natural Phenolic Acids.
    Ferruz E; Loran S; Herrera M; Gimenez I; Bervis N; Barcena C; Carramiñana JJ; Juan T; Herrera A; Ariño A
    J Food Prot; 2016 Oct; 79(10):1753-1758. PubMed ID: 28221840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can plant phenolic compounds reduce Fusarium growth and mycotoxin production in cereals?
    Schöneberg T; Kibler K; Sulyok M; Musa T; Bucheli TD; Mascher F; Bertossa M; Voegele RT; Vogelgsang S
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Dec; 35(12):2455-2470. PubMed ID: 30499757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mycotoxin production and cytotoxicity of Fusarium strains isolated from Norwegian cereals.
    Langseth W; Bernhoft A; Rundberget T; Kosiak B; Gareis M
    Mycopathologia; 1998-1999; 144(2):103-13. PubMed ID: 10481290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.