These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26812729)

  • 1. Low-Complexity Adaptive Threshold Detection for Molecular Communication.
    Damrath M; Hoeher PA
    IEEE Trans Nanobioscience; 2016 Apr; 15(3):200-8. PubMed ID: 26812729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Complexity Noncoherent Signal Detection for Nanoscale Molecular Communications.
    Li B; Sun M; Wang S; Guo W; Zhao C
    IEEE Trans Nanobioscience; 2016 Jan; 15(1):3-10. PubMed ID: 26685259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal receiver design for diffusive molecular communication with flow and additive noise.
    Noel A; Cheung KC; Schober R
    IEEE Trans Nanobioscience; 2014 Sep; 13(3):350-62. PubMed ID: 25095257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive Detection and ISI Mitigation for Mobile Molecular Communication.
    Chang G; Lin L; Yan H
    IEEE Trans Nanobioscience; 2018 Mar; 17(1):21-35. PubMed ID: 29570072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving receiver performance of diffusive molecular communication with enzymes.
    Noel A; Cheung KC; Schober R
    IEEE Trans Nanobioscience; 2014 Mar; 13(1):31-43. PubMed ID: 24594512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving adaptive receivers performance in molecular communication via diffusion.
    Shahbazi A; Jamshidi A
    IET Nanobiotechnol; 2019 Jun; 13(4):441-448. PubMed ID: 31171750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Complexity Adaptive Signal Detection for Mobile Molecular Communication.
    Mu X; Yan H; Li B; Liu M; Zheng R; Li Y; Lin L
    IEEE Trans Nanobioscience; 2020 Apr; 19(2):237-248. PubMed ID: 31944963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equivalent Discrete-Time Channel Modeling for Molecular Communication With Emphasize on an Absorbing Receiver.
    Damrath M; Korte S; Hoeher PA
    IEEE Trans Nanobioscience; 2017 Jan; 16(1):60-68. PubMed ID: 28092568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial Distance Estimation and Signal Detection for Diffusive Mobile Molecular Communication.
    Huang S; Lin L; Guo W; Yan H; Xu J; Liu F
    IEEE Trans Nanobioscience; 2020 Jul; 19(3):422-433. PubMed ID: 32275604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive study of sampling-based optimum signal detection in concentration-encoded molecular communication.
    Mahfuz MU; Makrakis D; Mouftah HT
    IEEE Trans Nanobioscience; 2014 Sep; 13(3):208-22. PubMed ID: 25163066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Electrical Model for Advection-Diffusion-Based Molecular Communication in Nanonetworks.
    Azadi M; Abouei J
    IEEE Trans Nanobioscience; 2016 Apr; 15(3):246-57. PubMed ID: 27046879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thresholdless Detection of Symbols in Nano-Communication Systems.
    Sharma S; Deka K; Bhatia V
    IEEE Trans Nanobioscience; 2020 Apr; 19(2):259-266. PubMed ID: 31796412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concentration-Encoded Subdiffusive Molecular Communication: Theory, Channel Characteristics, and Optimum Signal Detection.
    Mahfuz MU; Makrakis D; Mouftah HT
    IEEE Trans Nanobioscience; 2016 Sep; 15(6):533-548. PubMed ID: 27824576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Clock-Free Asynchronous Receiver Design for Molecular Timing Channels in Diffusion-Based Molecular Communications.
    Li Q
    IEEE Trans Nanobioscience; 2019 Oct; 18(4):585-596. PubMed ID: 31199266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Photolysis-Assist Molecular Communication for Tumor Biosensing.
    Sun Y; Bian H; Chen Y
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Asymmetric-Distance Metrics for Decoding of Convolutional Codes in Diffusion-Based Molecular Communications.
    Li Q
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):469-481. PubMed ID: 31071051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive Reactive Receiver Modeling for Diffusive Molecular Communication Systems: Reversible Binding, Molecule Degradation, and Finite Number of Receptors.
    Ahmadzadeh A; Arjmandi H; Burkovski A; Schober R
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):713-727. PubMed ID: 27654883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Symbol Synchronization for Diffusion-Based Molecular Communications.
    Jamali V; Ahmadzadeh A; Schober R
    IEEE Trans Nanobioscience; 2017 Dec; 16(8):873-887. PubMed ID: 29364131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel A Priori Simulation Algorithm for Absorbing Receivers in Diffusion-Based Molecular Communication Systems.
    Wang Y; Noel A; Yang N
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):437-447. PubMed ID: 30990189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale communication with molecular arrays in nanonetworks.
    Atakan B; Galmes S; Akan OB
    IEEE Trans Nanobioscience; 2012 Jun; 11(2):149-60. PubMed ID: 22287254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.