These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26812781)

  • 1. Recent progress on the role of GABAergic neurotransmission in the pathogenesis of Alzheimer's disease.
    Abbas G; Mahmood W; Kabir N
    Rev Neurosci; 2016 Jun; 27(4):449-55. PubMed ID: 26812781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamate and GABA in Microglia-Neuron Cross-Talk in Alzheimer's Disease.
    Czapski GA; Strosznajder JB
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amyloid Beta-Related Alterations to Glutamate Signaling Dynamics During Alzheimer's Disease Progression.
    Findley CA; Bartke A; Hascup KN; Hascup ER
    ASN Neuro; 2019; 11():1759091419855541. PubMed ID: 31213067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Modifications in Human Biofluids Suggest the Involvement of Sphingolipid, Antioxidant, and Glutamate Metabolism in Alzheimer's Disease Pathogenesis.
    Ellis B; Hye A; Snowden SG
    J Alzheimers Dis; 2015; 46(2):313-27. PubMed ID: 25835424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Taurine prevents the neurotoxicity of beta-amyloid and glutamate receptor agonists: activation of GABA receptors and possible implications for Alzheimer's disease and other neurological disorders.
    Louzada PR; Paula Lima AC; Mendonca-Silva DL; Noël F; De Mello FG; Ferreira ST
    FASEB J; 2004 Mar; 18(3):511-8. PubMed ID: 15003996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Dual Role of Glutamatergic Neurotransmission in Alzheimer's Disease: From Pathophysiology to Pharmacotherapy.
    Bukke VN; Archana M; Villani R; Romano AD; Wawrzyniak A; Balawender K; Orkisz S; Beggiato S; Serviddio G; Cassano T
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33050345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Memantine protects rat cortical cultured neurons against beta-amyloid-induced toxicity by attenuating tau phosphorylation.
    Song MS; Rauw G; Baker GB; Kar S
    Eur J Neurosci; 2008 Nov; 28(10):1989-2002. PubMed ID: 19046381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABAergic Microcircuits in Alzheimer's Disease Models.
    Villette V; Dutar P
    Curr Alzheimer Res; 2017; 14(1):30-39. PubMed ID: 27539596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amyloid beta peptides and glutamatergic synaptic dysregulation.
    Parameshwaran K; Dhanasekaran M; Suppiramaniam V
    Exp Neurol; 2008 Mar; 210(1):7-13. PubMed ID: 18053990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Oxidative Stress and Synapse Dysfunction in the Pathogenesis of Alzheimer's Disease: Understanding the Therapeutics Strategies.
    Kamat PK; Kalani A; Rai S; Swarnkar S; Tota S; Nath C; Tyagi N
    Mol Neurobiol; 2016 Jan; 53(1):648-661. PubMed ID: 25511446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Glutamate and Alzheimer's disease].
    Gazulla J; Cavero-Nagore M
    Rev Neurol; 2006 Apr 1-15; 42(7):427-32. PubMed ID: 16602060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deregulation of excitatory neurotransmission underlying synapse failure in Alzheimer's disease.
    Paula-Lima AC; Brito-Moreira J; Ferreira ST
    J Neurochem; 2013 Jul; 126(2):191-202. PubMed ID: 23668663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer's disease.
    Zumkehr J; Rodriguez-Ortiz CJ; Cheng D; Kieu Z; Wai T; Hawkins C; Kilian J; Lim SL; Medeiros R; Kitazawa M
    Neurobiol Aging; 2015 Jul; 36(7):2260-2271. PubMed ID: 25964214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Glutamate-related excitotoxicity neuroprotection with memantine, an uncompetitive antagonist of NMDA-glutamate receptor, in Alzheimer's disease and vascular dementia].
    Tanović A; Alfaro V
    Rev Neurol; 2006 May 16-31; 42(10):607-16. PubMed ID: 16703529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a Better Understanding of GABAergic Remodeling in Alzheimer's Disease.
    Govindpani K; Calvo-Flores Guzmán B; Vinnakota C; Waldvogel HJ; Faull RL; Kwakowsky A
    Int J Mol Sci; 2017 Aug; 18(8):. PubMed ID: 28825683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive astrocytes give neurons less support: implications for Alzheimer's disease.
    Steele ML; Robinson SR
    Neurobiol Aging; 2012 Feb; 33(2):423.e1-13. PubMed ID: 21051108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered neurotransmission prior to cognitive decline in AβPP/PS1 mice, a model of Alzheimer's disease.
    Hascup KN; Hascup ER
    J Alzheimers Dis; 2015; 44(3):771-6. PubMed ID: 25374106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homeostatic disinhibition in the aging brain and Alzheimer's disease.
    Gleichmann M; Chow VW; Mattson MP
    J Alzheimers Dis; 2011; 24(1):15-24. PubMed ID: 21187584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal stress signaling and eIF2α phosphorylation as molecular links between Alzheimer's disease and diabetes.
    Lourenco MV; Ferreira ST; De Felice FG
    Prog Neurobiol; 2015 Jun; 129():37-57. PubMed ID: 25857551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies.
    Chen Z; Zhong C
    Prog Neurobiol; 2013 Sep; 108():21-43. PubMed ID: 23850509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.