BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 26812904)

  • 1. Cardiovascular-Active Venom Toxins: An Overview.
    Rebello Horta CC; Chatzaki M; Rezende BA; Magalhães Bde F; Duarte CG; Felicori LF; Ribeiro Oliveira-Mendes BB; do Carmo AO; Chávez-Olórtegui C; Kalapothakis E
    Curr Med Chem; 2016; 23(6):603-22. PubMed ID: 26812904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Snake Venom Components: Tools and Cures to Target Cardiovascular Diseases.
    Frangieh J; Rima M; Fajloun Z; Henrion D; Sabatier JM; Legros C; Mattei C
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33921462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Snake venom three-finger toxins and their potential in drug development targeting cardiovascular diseases.
    Kini RM; Koh CY
    Biochem Pharmacol; 2020 Nov; 181():114105. PubMed ID: 32579959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Animal toxins - Nature's evolutionary-refined toolkit for basic research and drug discovery.
    Herzig V; Cristofori-Armstrong B; Israel MR; Nixon SA; Vetter I; King GF
    Biochem Pharmacol; 2020 Nov; 181():114096. PubMed ID: 32535105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide therapeutics from venom: Current status and potential.
    Pennington MW; Czerwinski A; Norton RS
    Bioorg Med Chem; 2018 Jun; 26(10):2738-2758. PubMed ID: 28988749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Snake Venom Peptides and Low Mass Proteins: Molecular Tools and Therapeutic Agents.
    Almeida JR; Resende LM; Watanabe RK; Carregari VC; Huancahuire-Vega S; da S Caldeira CA; Coutinho-Neto A; Soares AM; Vale N; de C Gomes PA; Marangoni S; de A Calderon L; Da Silva SL
    Curr Med Chem; 2017; 24(30):3254-3282. PubMed ID: 27804880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in venom peptide drug discovery: where are we at and where are we heading?
    Smallwood TB; Clark RJ
    Expert Opin Drug Discov; 2021 Oct; 16(10):1163-1173. PubMed ID: 33914674
    [No Abstract]   [Full Text] [Related]  

  • 8. Pharmacology and therapeutic potential of venom peptides.
    Robinson SD; Vetter I
    Biochem Pharmacol; 2020 Nov; 181():114207. PubMed ID: 32857993
    [No Abstract]   [Full Text] [Related]  

  • 9. Venoms as a platform for human drugs: translating toxins into therapeutics.
    King GF
    Expert Opin Biol Ther; 2011 Nov; 11(11):1469-84. PubMed ID: 21939428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of toxins and venoms to cardiovascular drug discovery.
    Hodgson WC; Isbister GK
    Curr Opin Pharmacol; 2009 Apr; 9(2):173-6. PubMed ID: 19111508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Venom peptides as therapeutics: advances, challenges and the future of venom-peptide discovery.
    Robinson SD; Undheim EAB; Ueberheide B; King GF
    Expert Rev Proteomics; 2017 Oct; 14(10):931-939. PubMed ID: 28879805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Therapeutic potential of venom peptides.
    Lewis RJ; Garcia ML
    Nat Rev Drug Discov; 2003 Oct; 2(10):790-802. PubMed ID: 14526382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxins Are an Excellent Source of Therapeutic Agents against Cardiovascular Diseases.
    Koh CY; Modahl CM; Kulkarni N; Kini RM
    Semin Thromb Hemost; 2018 Oct; 44(7):691-706. PubMed ID: 29954012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Venom peptides as pharmacological tools and therapeutics for diabetes.
    Robinson SD; Safavi-Hemami H
    Neuropharmacology; 2017 Dec; 127():79-86. PubMed ID: 28689026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LmrBPP9: A synthetic bradykinin-potentiating peptide from Lachesis muta rhombeata venom that inhibits the angiotensin-converting enzyme activity in vitro and reduces the blood pressure of hypertensive rats.
    Pinheiro-Júnior EL; Boldrini-França J; de Campos Araújo LMP; Santos-Filho NA; Bendhack LM; Cilli EM; Arantes EC
    Peptides; 2018 Apr; 102():1-7. PubMed ID: 29410030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The natriuretic peptide/helokinestatin precursor from Mexican beaded lizard (Heloderma horridum) venom: Amino acid sequence deduced from cloned cDNA and identification of two novel encoded helokinestatins.
    Ma C; Yang M; Zhou M; Wu Y; Wang L; Chen T; Ding A; Shaw C
    Peptides; 2011 Jun; 32(6):1166-71. PubMed ID: 21439339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Venom peptide analysis of Vipera ammodytes meridionalis (Viperinae) and Bothrops jararacussu (Crotalinae) demonstrates subfamily-specificity of the peptidome in the family Viperidae.
    Munawar A; Trusch M; Georgieva D; Spencer P; Frochaux V; Harder S; Arni RK; Duhalov D; Genov N; Schlüter H; Betzel C
    Mol Biosyst; 2011 Dec; 7(12):3298-307. PubMed ID: 21959992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological screening technologies for venom peptide discovery.
    Prashanth JR; Hasaballah N; Vetter I
    Neuropharmacology; 2017 Dec; 127():4-19. PubMed ID: 28377116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do the cardiovascular effects of angiotensin-converting enzyme (ACE) I involve ACE-independent mechanisms? new insights from proline-rich peptides of Bothrops jararaca.
    Ianzer D; Santos RA; Etelvino GM; Xavier CH; de Almeida Santos J; Mendes EP; Machado LT; Prezoto BC; Dive V; de Camargo AC
    J Pharmacol Exp Ther; 2007 Aug; 322(2):795-805. PubMed ID: 17475904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of Venom Proteins as Potential Anticancer Agents.
    Ejaz S; Hashmi FB; Malik WN; Ashraf M; Nasim FU; Iqbal M
    Protein Pept Lett; 2018; 25(7):688-701. PubMed ID: 29921199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.