BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 26812904)

  • 21. Kallikrein-kinin system as the dominant mechanism to counteract hyperactive renin-angiotensin system.
    Regoli D; Gobeil F
    Can J Physiol Pharmacol; 2017 Oct; 95(10):1117-1124. PubMed ID: 28384411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Breakthroughs in Venom Peptide Screening Methods to Advance Future Drug Discovery.
    Napolitano T; Holford M
    Protein Pept Lett; 2018; 25(12):1137-1148. PubMed ID: 30381057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Counter-regulatory renin-angiotensin system in cardiovascular disease.
    Paz Ocaranza M; Riquelme JA; García L; Jalil JE; Chiong M; Santos RAS; Lavandero S
    Nat Rev Cardiol; 2020 Feb; 17(2):116-129. PubMed ID: 31427727
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoparticles Functionalized with Venom-Derived Peptides and Toxins for Pharmaceutical Applications.
    Dos Santos AP; de Araújo TG; Rádis-Baptista G
    Curr Pharm Biotechnol; 2020; 21(2):97-109. PubMed ID: 31223083
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Animal peptides targeting voltage-activated sodium channels.
    Billen B; Bosmans F; Tytgat J
    Curr Pharm Des; 2008; 14(24):2492-502. PubMed ID: 18781997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new structurally atypical bradykinin-potentiating peptide isolated from Crotalus durissus cascavella venom (South American rattlesnake).
    Lopes DM; Junior NE; Costa PP; Martins PL; Santos CF; Carvalho ED; Carvalho MD; Pimenta DC; Cardi BA; Fonteles MC; Nascimento NR; Carvalho KM
    Toxicon; 2014 Nov; 90():36-44. PubMed ID: 25091347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Venoms and medical research].
    Ducancel F
    Biol Aujourdhui; 2016; 210(2):89-99. PubMed ID: 27687600
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Ants: a chemical library of anticancer molecules].
    Vétillard A; Bouzid W
    Biol Aujourdhui; 2016; 210(2):119-25. PubMed ID: 27687602
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid screening and identification of ACE inhibitors in snake venoms using at-line nanofractionation LC-MS.
    Mladic M; de Waal T; Burggraaff L; Slagboom J; Somsen GW; Niessen WMA; Manjunatha Kini R; Kool J
    Anal Bioanal Chem; 2017 Oct; 409(25):5987-5997. PubMed ID: 28801827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hypotensive Snake Venom Components-A Mini-Review.
    Péterfi O; Boda F; Szabó Z; Ferencz E; Bába L
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31370142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Harnessing the knowledge of animal toxins to generate drugs.
    Zambelli VO; Pasqualoto KF; Picolo G; Chudzinski-Tavassi AM; Cury Y
    Pharmacol Res; 2016 Oct; 112():30-36. PubMed ID: 26826284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of multifunctional compounds for cardiovascular disease: from natural scaffolds to "classical" multitarget approach.
    Bisi A; Gobbi S; Belluti F; Rampa A
    Curr Med Chem; 2013; 20(13):1759-82. PubMed ID: 23410171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. BPP-5a produces a potent and long-lasting NO-dependent antihypertensive effect.
    Ianzer D; Xavier CH; Fraga FC; Lautner RQ; Guerreiro JR; Machado LT; Mendes EP; de Camargo AC; Santos RA
    Ther Adv Cardiovasc Dis; 2011 Dec; 5(6):281-95. PubMed ID: 22032921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cardiovascular Effects of Snake Toxins: Cardiotoxicity and Cardioprotection.
    Averin AS; Utkin YN
    Acta Naturae; 2021; 13(3):4-14. PubMed ID: 34707893
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Animal Venom Peptides as a Treasure Trove for New Therapeutics Against Neurodegenerative Disorders.
    Yang X; Wang Y; Wu C; Ling EA
    Curr Med Chem; 2019; 26(25):4749-4774. PubMed ID: 30378475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Advances in the Discovery and Development of Marine Natural Products with Cardiovascular Pharmacological Effects.
    Zhou JB; Luo R; Zheng YL; Pang JY
    Mini Rev Med Chem; 2018; 18(6):527-550. PubMed ID: 28969542
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure Activity Relationship of Venom Toxins Targeting Potassium Channels.
    Batool S; Noureen N; Kamal MA
    Curr Drug Metab; 2018; 19(8):714-720. PubMed ID: 29283069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New proline-rich oligopeptides from the venom of African adders: Insights into the hypotensive effect of the venoms.
    Kodama RT; Cajado-Carvalho D; Kuniyoshi AK; Kitano ES; Tashima AK; Barna BF; Takakura AC; Serrano SM; Dias-Da-Silva W; Tambourgi DV; Portaro FV
    Biochim Biophys Acta; 2015 Jun; 1850(6):1180-7. PubMed ID: 25688758
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Future of Cardiovascular Therapeutics.
    MacRae CA; Roden DM; Loscalzo J
    Circulation; 2016 Jun; 133(25):2610-7. PubMed ID: 27324356
    [No Abstract]   [Full Text] [Related]  

  • 40. Venom Peptides: Improving Specificity in Cancer Therapy.
    Mahadevappa R; Ma R; Kwok HF
    Trends Cancer; 2017 Sep; 3(9):611-614. PubMed ID: 28867164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.