BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 26812937)

  • 1. Detection of Early Stage Apoptotic Cells Based on Label-Free Cytochrome c Assay Using Bioconjugated Metal Nanoclusters as Fluorescent Probes.
    Shamsipur M; Molaabasi F; Hosseinkhani S; Rahmati F
    Anal Chem; 2016 Feb; 88(4):2188-97. PubMed ID: 26812937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedimetric monitoring of apoptosis using cytochrome-aptamer bioconjugated silver nanocluster.
    Shamsipur M; Pashabadi A; Molaabasi F; Hosseinkhani S
    Biosens Bioelectron; 2017 Apr; 90():195-202. PubMed ID: 27898376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligonucleotide-stabilized fluorescent silver nanoclusters for the specific and sensitive detection of biotin.
    Xiong X; Tang Y; Zhao J; Zhao S
    Analyst; 2016 Feb; 141(4):1499-505. PubMed ID: 26750716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aptamer-based colorimetric determination of early-stage apoptotic cells via the release of cytochrome c from mitochondria and by exploiting silver/platinum alloy nanoclusters as a peroxidase mimic.
    Borghei YS; Hosseinkhani S
    Mikrochim Acta; 2019 Nov; 186(12):845. PubMed ID: 31768654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-stabilized silver nanoclusters and carbon nanoparticles oxide: A sensitive platform for label-free fluorescence turn-on detection of HIV-DNA sequences.
    Ye YD; Xia L; Xu DD; Xing XJ; Pang DW; Tang HW
    Biosens Bioelectron; 2016 Nov; 85():837-843. PubMed ID: 27295571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-Enhanced Raman Scattering-Fluorescence Dual-Mode Nanosensors for Quantitative Detection of Cytochrome c in Living Cells.
    Zhang J; Ma X; Wang Z
    Anal Chem; 2019 May; 91(10):6600-6607. PubMed ID: 31026147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A turn-off fluorimetric -aptasensor for early detection of apoptosis inside the cells.
    Salmani-Zarchi H; Borghei YS; Nikkhah M
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Nov; 300():122933. PubMed ID: 37267835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization.
    Peng J; Ling J; Zhang XQ; Bai HP; Zheng L; Cao QE; Ding ZT
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():1250-7. PubMed ID: 25305618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-Free Platform for MicroRNA Detection Based on the Fluorescence Quenching of Positively Charged Gold Nanoparticles to Silver Nanoclusters.
    Miao X; Cheng Z; Ma H; Li Z; Xue N; Wang P
    Anal Chem; 2018 Jan; 90(2):1098-1103. PubMed ID: 29198110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fluorescent aptamer/carbon dots based assay for Cytochrome c protein detection as a biomarker of cell apoptosis.
    Ghayyem S; Faridbod F
    Methods Appl Fluoresc; 2018 Dec; 7(1):015005. PubMed ID: 30524015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A DNA-stabilized silver nanoclusters/graphene oxide-based platform for the sensitive detection of DNA through hybridization chain reaction.
    Zhang S; Wang K; Li KB; Shi W; Jia WP; Chen X; Sun T; Han DM
    Biosens Bioelectron; 2017 May; 91():374-379. PubMed ID: 28056441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(styrene-4-sulfonate)-protected copper nanoclusters as a fluorometric probe for sequential detection of cytochrome c and trypsin.
    Hu Y; He Y; Han Y; Ge Y; Song G; Zhou J
    Mikrochim Acta; 2018 Jul; 185(8):383. PubMed ID: 30032328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free fluorometric assay for cytochrome c in apoptotic cells based on near infrared Ag
    Cai M; Ding C; Cao X; Wang F; Zhang C; Xian Y
    Anal Chim Acta; 2019 May; 1056():153-160. PubMed ID: 30797456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aptamer-Based Fluorescent Biosensing of Adenosine Triphosphate and Cytochrome
    Shamsipur M; Molaei K; Molaabasi F; Hosseinkhani S; Taherpour A; Sarparast M; Moosavifard SE; Barati A
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46077-46089. PubMed ID: 31718135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free fluorescent sensor for one-step lysozyme detection via positively charged gold nanorods.
    Zhang H; Liu P; Wang H; Ji X; Zhao M; Song Z
    Anal Bioanal Chem; 2021 Mar; 413(6):1541-1547. PubMed ID: 32705288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reversible DNA-silver nanoclusters-based molecular fluorescence switch and its use for logic gate operation.
    Huang Z; Ren J; Qu X
    Mol Biosyst; 2012 Mar; 8(3):921-6. PubMed ID: 22286835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Label-Free microRNA-155 Detection on the Basis of Fluorescent Silver Nanoclusters.
    Hosseini M; Akbari A; Ganjali MR; Dadmehr M; Rezayan AH
    J Fluoresc; 2015 Jul; 25(4):925-9. PubMed ID: 25953605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colorimetric and energy transfer based fluorometric turn-on method for determination of microRNA using silver nanoclusters and gold nanoparticles.
    Borghei YS; Hosseini M; Ganjali MR; Ju H
    Mikrochim Acta; 2018 May; 185(6):286. PubMed ID: 29737423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fluorescent aptasensor for sensitive analysis oxytetracycline based on silver nanoclusters.
    Hosseini M; Mehrabi F; Ganjali MR; Norouzi P
    Luminescence; 2016 Nov; 31(7):1339-1343. PubMed ID: 26899385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of salts, solvents and buffer on miRNA detection using DNA silver nanocluster (DNA/AgNCs) probes.
    Shah P; Cho SK; Thulstrup PW; Bhang YJ; Ahn JC; Choi SW; Rørvig-Lund A; Yang SW
    Nanotechnology; 2014 Jan; 25(4):045101. PubMed ID: 24393838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.