BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 26813013)

  • 21. Warburg-associated acidification represses lactic fermentation independently of lactate, contribution from real-time NMR on cell-free systems.
    Daverio Z; Kolkman M; Perrier J; Brunet L; Bendridi N; Sanglar C; Berger MA; Panthu B; Rautureau GJP
    Sci Rep; 2023 Oct; 13(1):17733. PubMed ID: 37853114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glucose Metabolism in Cancer: The Warburg Effect and Beyond.
    Bose S; Zhang C; Le A
    Adv Exp Med Biol; 2021; 1311():3-15. PubMed ID: 34014531
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cancer metabolism as a therapeutic target.
    Batra S; Adekola KU; Rosen ST; Shanmugam M
    Oncology (Williston Park); 2013 May; 27(5):460-7. PubMed ID: 25184270
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Warburg effect increases steady-state ROS condition in cancer cells through decreasing their antioxidant capacities (anticancer effects of 3-bromopyruvate through antagonizing Warburg effect).
    El Sayed SM; Mahmoud AA; El Sawy SA; Abdelaal EA; Fouad AM; Yousif RS; Hashim MS; Hemdan SB; Kadry ZM; Abdelmoaty MA; Gabr AG; Omran FM; Nabo MM; Ahmed NS
    Med Hypotheses; 2013 Nov; 81(5):866-70. PubMed ID: 24071366
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Therapeutic targeting of cancer cell metabolism.
    Dang CV; Hamaker M; Sun P; Le A; Gao P
    J Mol Med (Berl); 2011 Mar; 89(3):205-12. PubMed ID: 21301795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis?
    Gillies RJ; Gatenby RA
    J Bioenerg Biomembr; 2007 Jun; 39(3):251-7. PubMed ID: 17624581
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cancer's craving for sugar: an opportunity for clinical exploitation.
    Yeluri S; Madhok B; Prasad KR; Quirke P; Jayne DG
    J Cancer Res Clin Oncol; 2009 Jul; 135(7):867-77. PubMed ID: 19415328
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Flux Balance of Glucose Metabolism Clarifies the Requirements of the Warburg Effect.
    Dai Z; Shestov AA; Lai L; Locasale JW
    Biophys J; 2016 Sep; 111(5):1088-100. PubMed ID: 27602736
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models.
    Gatenby RA; Gawlinski ET
    Cancer Res; 2003 Jul; 63(14):3847-54. PubMed ID: 12873971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overcoming the Warburg Effect: Is it the key to survival in sepsis?
    Bar-Or D; Carrick M; Tanner A; Lieser MJ; Rael LT; Brody E
    J Crit Care; 2018 Feb; 43():197-201. PubMed ID: 28915394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Warburg effect and drug resistance.
    Bhattacharya B; Mohd Omar MF; Soong R
    Br J Pharmacol; 2016 Mar; 173(6):970-9. PubMed ID: 26750865
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hypoxia, cancer metabolism and the therapeutic benefit of targeting lactate/H(+) symporters.
    Marchiq I; Pouysségur J
    J Mol Med (Berl); 2016 Feb; 94(2):155-71. PubMed ID: 26099350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drivers of the Warburg phenotype.
    Cairns RA
    Cancer J; 2015; 21(2):56-61. PubMed ID: 25815844
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic gradients as key regulators in zonation of tumor energy metabolism: a tissue-scale model-based study.
    König M; Holzhütter HG; Berndt N
    Biotechnol J; 2013 Sep; 8(9):1058-69. PubMed ID: 23589477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A microscale mathematical model for metabolic symbiosis: Investigating the effects of metabolic inhibition on ATP turnover in tumors.
    Phipps C; Molavian H; Kohandel M
    J Theor Biol; 2015 Feb; 366():103-14. PubMed ID: 25433213
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation.
    Wu H; Ying M; Hu X
    Oncotarget; 2016 Jun; 7(26):40621-40629. PubMed ID: 27259254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The consequences of enhanced cell-autonomous glucose metabolism.
    Locasale JW
    Trends Endocrinol Metab; 2012 Nov; 23(11):545-51. PubMed ID: 22920571
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Warburg effect and its role in tumourigenesis.
    Lebelo MT; Joubert AM; Visagie MH
    Arch Pharm Res; 2019 Oct; 42(10):833-847. PubMed ID: 31473944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Otto Warburg's contributions to current concepts of cancer metabolism.
    Koppenol WH; Bounds PL; Dang CV
    Nat Rev Cancer; 2011 May; 11(5):325-37. PubMed ID: 21508971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How DNA methylation affects the Warburg effect.
    Zhu X; Xuan Z; Chen J; Li Z; Zheng S; Song P
    Int J Biol Sci; 2020; 16(12):2029-2041. PubMed ID: 32549751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.