These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 26813227)
1. Effects of Salt Loading on the Morphology of Astrocytes in the Ventral Glia Limitans of the Rat Supraoptic Nucleus. Choe KY; Prager-Khoutorsky M; Farmer WT; Murai KK; Bourque CW J Neuroendocrinol; 2016 Apr; 28(4):. PubMed ID: 26813227 [TBL] [Abstract][Full Text] [Related]
2. Glial limitans elasticity subjacent to the supraoptic nucleus. Salm AK; Hawrylak N J Neuroendocrinol; 2004 Aug; 16(8):661-8. PubMed ID: 15271058 [TBL] [Abstract][Full Text] [Related]
3. Differential expression of tenascin by astrocytes associated with the supraoptic nucleus (SON) of hydrated and dehydrated adult rats. Singleton PA; Salm AK J Comp Neurol; 1996 Sep; 373(2):186-99. PubMed ID: 8889921 [TBL] [Abstract][Full Text] [Related]
4. Radial glia-like cells in the supraoptic nucleus of the adult rat. Bonfanti L; Poulain DA; Theodosis DT J Neuroendocrinol; 1993 Feb; 5(1):1-5. PubMed ID: 8485539 [TBL] [Abstract][Full Text] [Related]
5. Dehydration and rehydration selectively and reversibly alter glial fibrillary acidic protein immunoreactivity in the rat supraoptic nucleus and subjacent glial limitans. Hawrylak N; Fleming JC; Salm AK Glia; 1998 Mar; 22(3):260-71. PubMed ID: 9482212 [TBL] [Abstract][Full Text] [Related]
6. Dehydration-associated changes in the ventral glial limitans subjacent to the supraoptic nucleus include a reduction in the extent of the basal lamina but not astrocytic process shrinkage. Salm AK; Bobak JB Exp Neurol; 1999 Dec; 160(2):425-32. PubMed ID: 10619559 [TBL] [Abstract][Full Text] [Related]
7. Plasticity of astrocytes of the ventral glial limitans subjacent to the supraoptic nucleus. Bobak JB; Salm AK J Comp Neurol; 1996 Dec; 376(2):188-97. PubMed ID: 8951636 [TBL] [Abstract][Full Text] [Related]
8. Effects of vagotomy, splanchnic nerve lesion, and fluorocitrate on the transmission of acute hyperosmotic stress signals to the supraoptic nucleus. Xiong Y; Liu R; Xu Y; Duan L; Cao R; Tu L; Li Z; Zhao G; Rao Z J Neurosci Res; 2011 Feb; 89(2):256-66. PubMed ID: 21162132 [TBL] [Abstract][Full Text] [Related]
9. Age-induced hypertrophy of astrocytes in rat supraoptic nucleus: a cytological, morphometric, and immunocytochemical study. Berciano MT; Andres MA; Calle E; Lafarga M Anat Rec; 1995 Sep; 243(1):129-44. PubMed ID: 8540627 [TBL] [Abstract][Full Text] [Related]
10. GABAA receptor-expressing astrocytes in the supraoptic nucleus lack glutamate uptake and receptor currents. Israel JM; Schipke CG; Ohlemeyer C; Theodosis DT; Kettenmann H Glia; 2003 Nov; 44(2):102-10. PubMed ID: 14515326 [TBL] [Abstract][Full Text] [Related]
11. Immunocytochemical localization of small-conductance, calcium-dependent potassium channels in astrocytes of the rat supraoptic nucleus. Armstrong WE; Rubrum A; Teruyama R; Bond CT; Adelman JP J Comp Neurol; 2005 Oct; 491(3):175-85. PubMed ID: 16134141 [TBL] [Abstract][Full Text] [Related]
12. CNTF receptor alpha is expressed by magnocellular neurons and expression is upregulated in the rat supraoptic nucleus during axonal sprouting. Watt JA; Lo D; Cranston HJ; Paden CM Exp Neurol; 2009 Jan; 215(1):135-41. PubMed ID: 18973757 [TBL] [Abstract][Full Text] [Related]
13. Vesicular glutamate transporter expression in supraoptic neurones suggests a glutamatergic phenotype. Ponzio TA; Ni Y; Montana V; Parpura V; Hatton GI J Neuroendocrinol; 2006 Apr; 18(4):253-65. PubMed ID: 16503920 [TBL] [Abstract][Full Text] [Related]
14. Dystrophin 71 and α1syntrophin in morpho-functional plasticity of rat supraoptic nuclei: Effect of saline surcharge and reversibly normal hydration. Sifi M; Benabdesselam R; Souttou S; Annese T; Rendon A; Nico B; Dorbani-Mamine L Acta Histochem; 2018 Apr; 120(3):187-195. PubMed ID: 29395317 [TBL] [Abstract][Full Text] [Related]
15. Reciprocal pathway between medullary visceral zone and hypothalamic supraoptic nucleus or paraventricular nucleus involved in hyperosmotic regulation. Yang Z; Rao Z; Jiang X; Yuan H; Duan L; Chen L; Wang Y; Xu R; Zeng Y Cell Biol Int; 2009 Apr; 33(4):475-82. PubMed ID: 18723099 [TBL] [Abstract][Full Text] [Related]
16. Activity-dependent modulation of neurotransmitter innervation to vasopressin neurons of the supraoptic nucleus. Mueller NK; Di S; Paden CM; Herman JP Endocrinology; 2005 Jan; 146(1):348-54. PubMed ID: 15388644 [TBL] [Abstract][Full Text] [Related]
18. Activity-dependent regulation of a chondroitin sulfate proteoglycan 6B4 phosphacan/RPTPbeta in the hypothalamic supraoptic nucleus. Miyata S; Akagi A; Hayashi N; Watanabe K; Oohira A Brain Res; 2004 Aug; 1017(1-2):163-71. PubMed ID: 15261112 [TBL] [Abstract][Full Text] [Related]
19. Immunocytochemistry and ultrastructure of the neuropil located ventral to the rat supraoptic nucleus. Yulis CR; Peruzzo B; Rodríguez EM Cell Tissue Res; 1984; 236(1):171-80. PubMed ID: 6713504 [TBL] [Abstract][Full Text] [Related]
20. Parabrachial nucleus projection towards the hypothalamic supraoptic nucleus: electrophysiological and anatomical observations in the rat. Jhamandas JH; Harris KH; Krukoff TL J Comp Neurol; 1991 Jun; 308(1):42-50. PubMed ID: 1874981 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]