These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 26813916)
1. A Biocompatible and Biodegradable Protein Hydrogel with Green and Red Autofluorescence: Preparation, Characterization and In Vivo Biodegradation Tracking and Modeling. Ma X; Sun X; Hargrove D; Chen J; Song D; Dong Q; Lu X; Fan TH; Fu Y; Lei Y Sci Rep; 2016 Jan; 6():19370. PubMed ID: 26813916 [TBL] [Abstract][Full Text] [Related]
2. Protein Microspheres with Unique Green and Red Autofluorescence for Noninvasively Tracking and Modeling Their in Vivo Biodegradation. Ma X; Wang T; Song D; Hargrove D; Dong Q; Luo Z; Chen J; Lu X; Luo Y; Fan TH; Lei Y ACS Biomater Sci Eng; 2016 Jun; 2(6):954-962. PubMed ID: 33429505 [TBL] [Abstract][Full Text] [Related]
3. pH-sensitive behavior of two-component hydrogels composed of N,O-carboxymethyl chitosan and alginate. Mi FL; Liang HF; Wu YC; Lin YS; Yang TF; Sung HW J Biomater Sci Polym Ed; 2005; 16(11):1333-45. PubMed ID: 16370237 [TBL] [Abstract][Full Text] [Related]
4. Biodegradable, anti-adhesive and tough polyurethane hydrogels crosslinked by triol crosslinkers. Xiao K; Wang Z; Wu Y; Lin W; He Y; Zhan J; Luo F; Li Z; Li J; Tan H; Fu Q J Biomed Mater Res A; 2019 Oct; 107(10):2205-2221. PubMed ID: 31116494 [TBL] [Abstract][Full Text] [Related]
5. In vivo degradability of hydrogels prepared from different gelatins by various cross-linking methods. Ozeki M; Tabata Y J Biomater Sci Polym Ed; 2005; 16(5):549-61. PubMed ID: 16001715 [TBL] [Abstract][Full Text] [Related]
6. pH and redox sensitive albumin hydrogel: A self-derived biomaterial. Raja ST; Thiruselvi T; Mandal AB; Gnanamani A Sci Rep; 2015 Nov; 5():15977. PubMed ID: 26527296 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and characterization of a novel hyaluronic acid hydrogel. Zhao X J Biomater Sci Polym Ed; 2006; 17(4):419-33. PubMed ID: 16768293 [TBL] [Abstract][Full Text] [Related]
8. New semi-interpenetrating network hydrogels: synthesis, characterization and properties. Zhao SP; Ma D; Zhang LM Macromol Biosci; 2006 Jun; 6(6):445-51. PubMed ID: 16761276 [TBL] [Abstract][Full Text] [Related]
9. Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials. Vu T; Xue Y; Vuong T; Erbe M; Bennet C; Palazzo B; Popielski L; Rodriguez N; Hu X Int J Mol Sci; 2016 Sep; 17(9):. PubMed ID: 27618011 [TBL] [Abstract][Full Text] [Related]
10. Cell viability of chitosan-containing semi-interpenetrated hydrogels based on PCL-PEG-PCL diacrylate macromer. Zhu AP; Chan-Park MB J Biomater Sci Polym Ed; 2005; 16(3):301-16. PubMed ID: 15850286 [TBL] [Abstract][Full Text] [Related]
11. Photo-cross-linked biodegradable hydrogels based on n-arm-poly(ethylene glycol), poly(ε-caprolactone) and/or methacrylic acid for controlled drug release. Hou P; Zhang N; Wu R; Xu W; Hou Z J Biomater Appl; 2017 Oct; 32(4):511-523. PubMed ID: 28899224 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and characterization of a novel degradable phosphate-containing hydrogel. Wang DA; Williams CG; Li Q; Sharma B; Elisseeff JH Biomaterials; 2003 Oct; 24(22):3969-80. PubMed ID: 12834592 [TBL] [Abstract][Full Text] [Related]
13. Tough chitosan hydrogel based on purified regeneration and alkaline solvent as biomaterials for tissue engineering applications. Bi S; Bao Z; Bai X; Hu S; Cheng X; Chen X Int J Biol Macromol; 2017 Nov; 104(Pt A):224-231. PubMed ID: 28601650 [TBL] [Abstract][Full Text] [Related]
14. Visual in vivo degradation of injectable hydrogel by real-time and non-invasive tracking using carbon nanodots as fluorescent indicator. Wang L; Li B; Xu F; Li Y; Xu Z; Wei D; Feng Y; Wang Y; Jia D; Zhou Y Biomaterials; 2017 Nov; 145():192-206. PubMed ID: 28869865 [TBL] [Abstract][Full Text] [Related]
15. Preparation and characterization of amidated pectin based hydrogels for drug delivery system. Mishra RK; Datt M; Pal K; Banthia AK J Mater Sci Mater Med; 2008 Jun; 19(6):2275-80. PubMed ID: 18058200 [TBL] [Abstract][Full Text] [Related]
16. Heat- and pH-induced BSA conformational changes, hydrogel formation and application as 3D cell scaffold. Navarra G; Peres C; Contardi M; Picone P; San Biagio PL; Di Carlo M; Giacomazza D; Militello V Arch Biochem Biophys; 2016 Sep; 606():134-42. PubMed ID: 27480606 [TBL] [Abstract][Full Text] [Related]
17. Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Eke G; Mangir N; Hasirci N; MacNeil S; Hasirci V Biomaterials; 2017 Jun; 129():188-198. PubMed ID: 28343005 [TBL] [Abstract][Full Text] [Related]
18. In situ crosslinkable elastomeric hydrogel for long-term cell encapsulation for cardiac applications. Komeri R; Muthu J J Biomed Mater Res A; 2016 Dec; 104(12):2936-2944. PubMed ID: 27409990 [TBL] [Abstract][Full Text] [Related]
20. Integrated Experimental and Modeling Study of Enzymatic Degradation Using Novel Autofluorescent BSA Microspheres. Ma X; Li JQ; O'Connell C; Fan TH; Lei Y Langmuir; 2018 Jan; 34(1):191-197. PubMed ID: 29256617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]