BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 26814128)

  • 1. Multidomain, Surface Layer-associated Glycoside Hydrolases Contribute to Plant Polysaccharide Degradation by Caldicellulosiruptor Species.
    Conway JM; Pierce WS; Le JH; Harper GW; Wright JH; Tucker AL; Zurawski JV; Lee LL; Blumer-Schuette SE; Kelly RM
    J Biol Chem; 2016 Mar; 291(13):6732-47. PubMed ID: 26814128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Caldicellulosiruptor bescii with Surface Layer Homology Domain-Linked Glycoside Hydrolases Improves Plant Biomass Solubilization.
    Laemthong T; Bing RG; Crosby JR; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2022 Oct; 88(20):e0127422. PubMed ID: 36169328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. S-layer homology domain proteins Csac_0678 and Csac_2722 are implicated in plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus.
    Ozdemir I; Blumer-Schuette SE; Kelly RM
    Appl Environ Microbiol; 2012 Feb; 78(3):768-77. PubMed ID: 22138994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycoside hydrolase inventory drives plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus.
    VanFossen AL; Ozdemir I; Zelin SL; Kelly RM
    Biotechnol Bioeng; 2011 Jul; 108(7):1559-69. PubMed ID: 21337327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a thermostable endo-1,3(4)-β-glucanase from Caldicellulosiruptor sp. strain F32 and its application for yeast lysis.
    Meng DD; Wang B; Ma XQ; Ji SQ; Lu M; Li FL
    Appl Microbiol Biotechnol; 2016 Jun; 100(11):4923-34. PubMed ID: 26837217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional and structural characterization of a potent GH74 endo-xyloglucanase from the soil saprophyte Cellvibrio japonicus unravels the first step of xyloglucan degradation.
    Attia M; Stepper J; Davies GJ; Brumer H
    FEBS J; 2016 May; 283(9):1701-19. PubMed ID: 26929175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic and transcriptomic analysis of carbohydrate utilization by Paenibacillus sp. JDR-2: systems for bioprocessing plant polysaccharides.
    Sawhney N; Crooks C; Chow V; Preston JF; St John FJ
    BMC Genomics; 2016 Feb; 17():131. PubMed ID: 26912334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses.
    Lee LL; Blumer-Schuette SE; Izquierdo JA; Zurawski JV; Loder AJ; Conway JM; Elkins JG; Podar M; Clum A; Jones PC; Piatek MJ; Weighill DA; Jacobson DA; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29475869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical characterization of extra- and intracellular endoxylanse from thermophilic bacterium Caldicellulosiruptor kronotskyensis.
    Jia X; Qiao W; Tian W; Peng X; Mi S; Su H; Han Y
    Sci Rep; 2016 Feb; 6():21672. PubMed ID: 26899227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-Function Analysis of a Mixed-linkage β-Glucanase/Xyloglucanase from the Key Ruminal Bacteroidetes Prevotella bryantii B(1)4.
    McGregor N; Morar M; Fenger TH; Stogios P; Lenfant N; Yin V; Xu X; Evdokimova E; Cui H; Henrissat B; Savchenko A; Brumer H
    J Biol Chem; 2016 Jan; 291(3):1175-97. PubMed ID: 26507654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depiction of carbohydrate-active enzyme diversity in Caldicellulosiruptor sp. F32 at the genome level reveals insights into distinct polysaccharide degradation features.
    Meng DD; Ying Y; Zhang KD; Lu M; Li FL
    Mol Biosyst; 2015 Nov; 11(11):3164-73. PubMed ID: 26392378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrete and structurally unique proteins (tāpirins) mediate attachment of extremely thermophilic Caldicellulosiruptor species to cellulose.
    Blumer-Schuette SE; Alahuhta M; Conway JM; Lee LL; Zurawski JV; Giannone RJ; Hettich RL; Lunin VV; Himmel ME; Kelly RM
    J Biol Chem; 2015 Apr; 290(17):10645-56. PubMed ID: 25720489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. βγ-Crystallination Endows a Novel Bacterial Glycoside Hydrolase 64 with Ca
    Krishnan B; Srivastava SS; Sankeshi V; Garg R; Srivastava S; Sankaranarayanan R; Sharma Y
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31527113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus.
    Blumer-Schuette SE; Ozdemir I; Mistry D; Lucas S; Lapidus A; Cheng JF; Goodwin LA; Pitluck S; Land ML; Hauser LJ; Woyke T; Mikhailova N; Pati A; Kyrpides NC; Ivanova N; Detter JC; Walston-Davenport K; Han S; Adams MW; Kelly RM
    J Bacteriol; 2011 Mar; 193(6):1483-4. PubMed ID: 21216991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization.
    Crosby JR; Laemthong T; Bing RG; Zhang K; Tanwee TNN; Lipscomb GL; Rodionov DA; Zhang Y; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2022 Nov; 88(21):e0130222. PubMed ID: 36218355
    [No Abstract]   [Full Text] [Related]  

  • 16. The Quaternary Structure of a Glycoside Hydrolase Dictates Specificity toward β-Glucans.
    Lafond M; Sulzenbacher G; Freyd T; Henrissat B; Berrin JG; Garron ML
    J Biol Chem; 2016 Mar; 291(13):7183-94. PubMed ID: 26755730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Dimeric Exoglucanase (GH5_38): Biochemical and Structural Characterisation towards its Application in Alkyl Cellobioside Synthesis.
    Mafa MS; Dirr HW; Malgas S; Krause RWM; Rashamuse K; Pletschke BI
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32050450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and characterization of an exo-xylogucanase from rumenal microbial metagenome.
    Wong DD; Chan VJ; McCormack AA; Batt SB
    Protein Pept Lett; 2010 Jun; 17(6):803-8. PubMed ID: 20044921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor.
    Blumer-Schuette SE; Lewis DL; Kelly RM
    Appl Environ Microbiol; 2010 Dec; 76(24):8084-92. PubMed ID: 20971878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The N-Terminal GH10 Domain of a Multimodular Protein from Caldicellulosiruptor bescii Is a Versatile Xylanase/β-Glucanase That Can Degrade Crystalline Cellulose.
    Xue X; Wang R; Tu T; Shi P; Ma R; Luo H; Yao B; Su X
    Appl Environ Microbiol; 2015 Jun; 81(11):3823-33. PubMed ID: 25819971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.