BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1168 related articles for article (PubMed ID: 26814169)

  • 21. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The importance of employing computational resources for the automation of drug discovery.
    Rosales-Hernández MC; Correa-Basurto J
    Expert Opin Drug Discov; 2015 Mar; 10(3):213-9. PubMed ID: 25682781
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of support vector machine to three-dimensional shape-based virtual screening using comprehensive three-dimensional molecular shape overlay with known inhibitors.
    Sato T; Yuki H; Takaya D; Sasaki S; Tanaka A; Honma T
    J Chem Inf Model; 2012 Apr; 52(4):1015-26. PubMed ID: 22424085
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights into Machine Learning-based Approaches for Virtual Screening in Drug Discovery: Existing Strategies and Streamlining Through FP-CADD.
    Hussain W; Rasool N; Khan YD
    Curr Drug Discov Technol; 2021; 18(4):463-472. PubMed ID: 32767944
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Knowledge-Based Strategy to Improve Ligand Pose Prediction Accuracy for Lead Optimization.
    Gao C; Thorsteinson N; Watson I; Wang J; Vieth M
    J Chem Inf Model; 2015 Jul; 55(7):1460-8. PubMed ID: 26090547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of Virtual Screening Approaches for the Identification of Small Molecule Inhibitors of the Methyllysine Reader Protein Spindlin1.
    Luise C; Robaa D
    Methods Mol Biol; 2018; 1824():347-370. PubMed ID: 30039418
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Beware of machine learning-based scoring functions-on the danger of developing black boxes.
    Gabel J; Desaphy J; Rognan D
    J Chem Inf Model; 2014 Oct; 54(10):2807-15. PubMed ID: 25207678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine learning optimization of cross docking accuracy.
    Bjerrum EJ
    Comput Biol Chem; 2016 Jun; 62():133-44. PubMed ID: 27179709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ADMET Evaluation in Drug Discovery. 16. Predicting hERG Blockers by Combining Multiple Pharmacophores and Machine Learning Approaches.
    Wang S; Sun H; Liu H; Li D; Li Y; Hou T
    Mol Pharm; 2016 Aug; 13(8):2855-66. PubMed ID: 27379394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining label-free cell phenotypic profiling with computational approaches for novel drug discovery.
    Fang Y
    Expert Opin Drug Discov; 2015 Apr; 10(4):331-43. PubMed ID: 25727255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The application of machine learning techniques to innovative antibacterial discovery and development.
    Serafim MSM; Kronenberger T; Oliveira PR; Poso A; Honório KM; Mota BEF; Maltarollo VG
    Expert Opin Drug Discov; 2020 Oct; 15(10):1165-1180. PubMed ID: 32552005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From machine learning to deep learning: progress in machine intelligence for rational drug discovery.
    Zhang L; Tan J; Han D; Zhu H
    Drug Discov Today; 2017 Nov; 22(11):1680-1685. PubMed ID: 28881183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extremely Randomized Machine Learning Methods for Compound Activity Prediction.
    Czarnecki WM; Podlewska S; Bojarski AJ
    Molecules; 2015 Nov; 20(11):20107-17. PubMed ID: 26569196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular interaction fingerprint approaches for GPCR drug discovery.
    Vass M; Kooistra AJ; Ritschel T; Leurs R; de Esch IJ; de Graaf C
    Curr Opin Pharmacol; 2016 Oct; 30():59-68. PubMed ID: 27479316
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular insights on ABL kinase activation using tree-based machine learning models and molecular docking.
    Fernandes PO; Martins DM; de Souza Bozzi A; Martins JPA; de Moraes AH; Maltarollo VG
    Mol Divers; 2021 Aug; 25(3):1301-1314. PubMed ID: 34191245
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational predictive models for P-glycoprotein inhibition of in-house chalcone derivatives and drug-bank compounds.
    Ngo TD; Tran TD; Le MT; Thai KM
    Mol Divers; 2016 Nov; 20(4):945-961. PubMed ID: 27431577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein Family-Specific Models Using Deep Neural Networks and Transfer Learning Improve Virtual Screening and Highlight the Need for More Data.
    Imrie F; Bradley AR; van der Schaar M; Deane CM
    J Chem Inf Model; 2018 Nov; 58(11):2319-2330. PubMed ID: 30273487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Application of Machine Learning Techniques in Clinical Drug Therapy.
    Meng HY; Jin WL; Yan CK; Yang H
    Curr Comput Aided Drug Des; 2019; 15(2):111-119. PubMed ID: 29804538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes.
    Bitencourt-Ferreira G; de Azevedo WF
    Biophys Chem; 2018 Sep; 240():63-69. PubMed ID: 29906639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 59.