These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26815005)

  • 1. Mg(2+) differentially regulates two modes of mitochondrial Ca(2+) uptake in isolated cardiac mitochondria: implications for mitochondrial Ca(2+) sequestration.
    Blomeyer CA; Bazil JN; Stowe DF; Dash RK; Camara AK
    J Bioenerg Biomembr; 2016 Jun; 48(3):175-88. PubMed ID: 26815005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extra-matrix Mg2+ limits Ca2+ uptake and modulates Ca2+ uptake-independent respiration and redox state in cardiac isolated mitochondria.
    Boelens AD; Pradhan RK; Blomeyer CA; Camara AK; Dash RK; Stowe DF
    J Bioenerg Biomembr; 2013 Jun; 45(3):203-18. PubMed ID: 23456198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the calcium sequestration system in isolated guinea pig cardiac mitochondria.
    Bazil JN; Blomeyer CA; Pradhan RK; Camara AK; Dash RK
    J Bioenerg Biomembr; 2013 Jun; 45(3):177-88. PubMed ID: 23180139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational analysis of Ca2+ dynamics in isolated cardiac mitochondria predicts two distinct modes of Ca2+ uptake.
    Tewari SG; Camara AK; Stowe DF; Dash RK
    J Physiol; 2014 May; 592(9):1917-30. PubMed ID: 24591571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic buffering of mitochondrial Ca2+ during Ca2+ uptake and Na+-induced Ca2+ release.
    Blomeyer CA; Bazil JN; Stowe DF; Pradhan RK; Dash RK; Camara AK
    J Bioenerg Biomembr; 2013 Jun; 45(3):189-202. PubMed ID: 23225099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow Ca
    Haumann J; Camara AKS; Gadicherla AK; Navarro CD; Boelens AD; Blomeyer CA; Dash RK; Boswell MR; Kwok WM; Stowe DF
    Front Physiol; 2018; 9():1914. PubMed ID: 30804812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adverse bioenergetic consequences of Na+-Ca2+ exchanger-mediated Ca2+ influx in cardiac myocytes.
    Kohlhaas M; Maack C
    Circulation; 2010 Nov; 122(22):2273-80. PubMed ID: 21098439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyses of Mitochondrial Calcium Influx in Isolated Mitochondria and Cultured Cells.
    Maxwell JT; Tsai CH; Mohiuddin TA; Kwong JQ
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29757281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes.
    Maack C; Cortassa S; Aon MA; Ganesan AN; Liu T; O'Rourke B
    Circ Res; 2006 Jul; 99(2):172-82. PubMed ID: 16778127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual Effect of Phosphate Transport on Mitochondrial Ca2+ Dynamics.
    Wei AC; Liu T; O'Rourke B
    J Biol Chem; 2015 Jun; 290(26):16088-98. PubMed ID: 25963147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual effect of spermine on mitochondrial Ca2+ transport.
    Lenzen S; Münster W; Rustenbeck I
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):597-602. PubMed ID: 1530590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The uptake and release of calcium by heart mitochondria.
    Harris EJ
    Biochem J; 1977 Dec; 168(3):447-56. PubMed ID: 204287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient exposure to hydrogen peroxide causes an increase in mitochondria-derived superoxide as a result of sustained alteration in L-type Ca2+ channel function in the absence of apoptosis in ventricular myocytes.
    Viola HM; Arthur PG; Hool LC
    Circ Res; 2007 Apr; 100(7):1036-44. PubMed ID: 17347474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms for intracellular calcium regulation in heart. I. Stopped-flow measurements of Ca++ uptake by cardiac mitochondria.
    Scarpa A; Graziotti P
    J Gen Physiol; 1973 Dec; 62(6):756-72. PubMed ID: 4548716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Physiological and Pathological Roles of Mitochondrial Calcium Uptake in Heart.
    Lai L; Qiu H
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33080805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-mediated coupling between mitochondrial substrate dehydrogenation and cardiac workload in single guinea-pig ventricular myocytes.
    Jo H; Noma A; Matsuoka S
    J Mol Cell Cardiol; 2006 Mar; 40(3):394-404. PubMed ID: 16480740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of sodium, hydrogen and magnesium ions on mitochondrial calcium sequestration in adult rat ventricular myocytes.
    Fry CH; Powell T; Twist VW; Ward JP
    Proc R Soc Lond B Biol Sci; 1984 Dec; 223(1231):239-54. PubMed ID: 6151662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetic study of cardioplegic hearts under ischaemia/reperfusion and [Ca(2+)] changes in cardiomyocytes of guinea-pig: mitochondrial role.
    Ragone MI; Torres NS; Consolini AE
    Acta Physiol (Oxf); 2013 Feb; 207(2):369-84. PubMed ID: 23171431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Total Matrix Ca
    Natarajan GK; Glait L; Mishra J; Stowe DF; Camara AKS; Kwok WM
    Front Physiol; 2020; 11():510600. PubMed ID: 33041851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 'Pressure-flow'-triggered intracellular Ca2+ transients in rat cardiac myocytes: possible mechanisms and role of mitochondria.
    Belmonte S; Morad M
    J Physiol; 2008 Mar; 586(5):1379-97. PubMed ID: 18187469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.