These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 26815141)
1. Nicking endonuclease-assisted recycling of target-aptamer complex for sensitive electrochemical detection of adenosine triphosphate. Hu T; Wen W; Zhang X; Wang S Analyst; 2016 Feb; 141(4):1506-11. PubMed ID: 26815141 [TBL] [Abstract][Full Text] [Related]
2. A sensitive electrochemical aptasensor for ATP detection based on exonuclease III-assisted signal amplification strategy. Bao T; Shu H; Wen W; Zhang X; Wang S Anal Chim Acta; 2015 Mar; 862():64-9. PubMed ID: 25682429 [TBL] [Abstract][Full Text] [Related]
3. General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe. Li J; Fu HE; Wu LJ; Zheng AX; Chen GN; Yang HH Anal Chem; 2012 Jun; 84(12):5309-15. PubMed ID: 22642720 [TBL] [Abstract][Full Text] [Related]
4. Signal amplified strategy based on target-induced strand release coupling cleavage of nicking endonuclease for the ultrasensitive detection of ochratoxin A. Hun X; Liu F; Mei Z; Ma L; Wang Z; Luo X Biosens Bioelectron; 2013 Jan; 39(1):145-51. PubMed ID: 22938841 [TBL] [Abstract][Full Text] [Related]
5. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags. Zhou Q; Lin Y; Lin Y; Wei Q; Chen G; Tang D Talanta; 2016; 146():23-8. PubMed ID: 26695229 [TBL] [Abstract][Full Text] [Related]
6. Ultrasensitive and selective electrochemical biosensor for detection of mercury (II) ions by nicking endonuclease-assisted target recycling and hybridization chain reaction signal amplification. Hong M; Wang M; Wang J; Xu X; Lin Z Biosens Bioelectron; 2017 Aug; 94():19-23. PubMed ID: 28237902 [TBL] [Abstract][Full Text] [Related]
7. A simple, fast, and sensitive assay for the detection of DNA, thrombin, and adenosine triphosphate based on Dual-Hairpin DNA structure. He X; Wang G; Xu G; Zhu Y; Chen L; Zhang X Langmuir; 2013 Nov; 29(46):14328-34. PubMed ID: 24079405 [TBL] [Abstract][Full Text] [Related]
8. Exonuclease-Catalyzed Target Recycling Amplification and Immobilization-free Electrochemical Aptasensor. Tan Y; Wei X; Zhang Y; Wang P; Qiu B; Guo L; Lin Z; Yang HH Anal Chem; 2015 Dec; 87(23):11826-31. PubMed ID: 26542113 [TBL] [Abstract][Full Text] [Related]
9. A universal amplified strategy for aptasensors: enhancing sensitivity through allostery-triggered enzymatic recycling amplification. Feng K; Kong R; Wang H; Zhang S; Qu F Biosens Bioelectron; 2012; 38(1):121-5. PubMed ID: 22709934 [TBL] [Abstract][Full Text] [Related]
10. Ultrasensitive amperometric aptasensor for the epithelial cell adhesion molecule by using target-driven toehold-mediated DNA recycling amplification. Chen Q; Hu W; Shang B; Wei J; Chen L; Guo X; Ran F; Chen W; Ding X; Xu Y; Wu Y Mikrochim Acta; 2018 Mar; 185(3):202. PubMed ID: 29594643 [TBL] [Abstract][Full Text] [Related]
11. Highly Selective and Sensitive Electrochemiluminescence Biosensor for p53 DNA Sequence Based on Nicking Endonuclease Assisted Target Recycling and Hyperbranched Rolling Circle Amplification. Yang L; Tao Y; Yue G; Li R; Qiu B; Guo L; Lin Z; Yang HH Anal Chem; 2016 May; 88(10):5097-103. PubMed ID: 27086663 [TBL] [Abstract][Full Text] [Related]
12. An insertion approach electrochemical aptasensor for mucin 1 detection based on exonuclease-assisted target recycling. Wen W; Hu R; Bao T; Zhang X; Wang S Biosens Bioelectron; 2015 Sep; 71():13-17. PubMed ID: 25880833 [TBL] [Abstract][Full Text] [Related]
13. A G-quadruplex-based Label-free Fluorometric Aptasensor for Adenosine Triphosphate Detection. Li LJ; Tian X; Kong XJ; Chu X Anal Sci; 2015; 31(6):469-73. PubMed ID: 26063007 [TBL] [Abstract][Full Text] [Related]
14. Target-induced structure switching of hairpin aptamers for label-free and sensitive fluorescent detection of ATP via exonuclease-catalyzed target recycling amplification. Xu Y; Xu J; Xiang Y; Yuan R; Chai Y Biosens Bioelectron; 2014 Jan; 51():293-6. PubMed ID: 23974161 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles. Zhang S; Xia J; Li X Anal Chem; 2008 Nov; 80(22):8382-8. PubMed ID: 18939854 [TBL] [Abstract][Full Text] [Related]
16. A novel aptasensor for the ultra-sensitive detection of adenosine triphosphate via aptamer/quantum dot based resonance energy transfer. Li Z; Wang Y; Liu Y; Zeng Y; Huang A; Peng N; Liu X; Liu J Analyst; 2013 Sep; 138(17):4732-6. PubMed ID: 23814782 [TBL] [Abstract][Full Text] [Related]
17. A versatile and highly sensitive homogeneous electrochemical strategy based on the split aptamer binding-induced DNA three-way junction and exonuclease III-assisted target recycling. Hou T; Li W; Zhang L; Li F Analyst; 2015 Aug; 140(16):5748-53. PubMed ID: 26165638 [TBL] [Abstract][Full Text] [Related]
18. Ultrasensitive signal-on DNA biosensor based on nicking endonuclease assisted electrochemistry signal amplification. Liu Z; Zhang W; Zhu S; Zhang L; Hu L; Parveen S; Xu G Biosens Bioelectron; 2011 Nov; 29(1):215-8. PubMed ID: 21855318 [TBL] [Abstract][Full Text] [Related]
19. Aptamer superstructure-based electrochemical biosensor for sensitive detection of ATP in rat brain with in vivo microdialysis. Jiang Y; Ma W; Ji W; Wei H; Mao L Analyst; 2019 Feb; 144(5):1711-1717. PubMed ID: 30657477 [TBL] [Abstract][Full Text] [Related]
20. A novel fluorescent biosensor for Adenosine Triphosphate detection based on the polydopamine nanospheres integrating with enzymatic recycling amplification. Ji X; Yi B; Xu Y; Zhao Y; Zhong H; Ding C Talanta; 2017 Jul; 169():8-12. PubMed ID: 28411826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]