These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26815167)

  • 1. Information and redundancy in the burial folding code of globular proteins within a wide range of shapes and sizes.
    Ferreira DC; van der Linden MG; de Oliveira LC; Onuchic JN; de Araújo AF
    Proteins; 2016 Apr; 84(4):515-31. PubMed ID: 26815167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio protein folding simulations using atomic burials as informational intermediates between sequence and structure.
    van der Linden MG; Ferreira DC; de Oliveira LC; Onuchic JN; de Araújo AF
    Proteins; 2014 Jul; 82(7):1186-99. PubMed ID: 24356941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Native atomic burials, supplemented by physically motivated hydrogen bond constraints, contain sufficient information to determine the tertiary structure of small globular proteins.
    Pereira de Araújo AF; Gomes AL; Bursztyn AA; Shakhnovich EI
    Proteins; 2008 Feb; 70(3):971-83. PubMed ID: 17847091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constrained Layer Assignment for the Protein Burial Folding Code Accounting for Chain Connectivity.
    van der Linden MG; Ferreira DC; Pereira de Araújo AF
    J Phys Chem B; 2022 Aug; 126(33):6159-6170. PubMed ID: 35952378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Information-theoretic analysis and prediction of protein atomic burials: on the search for an informational intermediate between sequence and structure.
    Rocha JR; van der Linden MG; Ferreira DC; Azevêdo PH; Pereira de Araújo AF
    Bioinformatics; 2012 Nov; 28(21):2755-62. PubMed ID: 22923297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sequence-compatible amount of native burial information is sufficient for determining the structure of small globular proteins.
    Pereira de Araujo AF; Onuchic JN
    Proc Natl Acad Sci U S A; 2009 Nov; 106(45):19001-4. PubMed ID: 19858496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the conformation of folding initiation sites in proteins by computer simulation.
    Avbelj F; Moult J
    Proteins; 1995 Oct; 23(2):129-41. PubMed ID: 8592695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio structure prediction for small polypeptides and protein fragments using genetic algorithms.
    Pedersen JT; Moult J
    Proteins; 1995 Nov; 23(3):454-60. PubMed ID: 8710838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contact order and ab initio protein structure prediction.
    Bonneau R; Ruczinski I; Tsai J; Baker D
    Protein Sci; 2002 Aug; 11(8):1937-44. PubMed ID: 12142448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined multiple sequence reduced protein model approach to predict the tertiary structure of small proteins.
    Ortiz AR; Kolinski A; Skolnick J
    Pac Symp Biocomput; 1998; ():377-88. PubMed ID: 9697197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TOUCHSTONE II: a new approach to ab initio protein structure prediction.
    Zhang Y; Kolinski A; Skolnick J
    Biophys J; 2003 Aug; 85(2):1145-64. PubMed ID: 12885659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entropy reduction effect imposed by hydrogen bond formation on protein folding cooperativity: evidence from a hydrophobic minimalist model.
    Barbosa MA; Garcia LG; Pereira de Araújo AF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051903. PubMed ID: 16383641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An algorithm for prediction of structural elements in small proteins.
    Kolinski A; Skolnick J; Godzik A
    Pac Symp Biocomput; 1996; ():446-60. PubMed ID: 9390250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TOUCHSTONE: an ab initio protein structure prediction method that uses threading-based tertiary restraints.
    Kihara D; Lu H; Kolinski A; Skolnick J
    Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10125-30. PubMed ID: 11504922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fold assembly of small proteins using monte carlo simulations driven by restraints derived from multiple sequence alignments.
    Ortiz AR; Kolinski A; Skolnick J
    J Mol Biol; 1998 Mar; 277(2):419-48. PubMed ID: 9514747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio protein folding simulations with genetic algorithms: simulations on the complete sequence of small proteins.
    Pedersen JT; Moult J
    Proteins; 1997; Suppl 1():179-84. PubMed ID: 9518346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of protein-folding pathways by reduced-space modeling.
    Kmiecik S; Kolinski A
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12330-5. PubMed ID: 17636132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-atom ab initio folding of a diverse set of proteins.
    Yang JS; Chen WW; Skolnick J; Shakhnovich EI
    Structure; 2007 Jan; 15(1):53-63. PubMed ID: 17223532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme.
    Kolinski A; Skolnick J
    Proteins; 1994 Apr; 18(4):338-52. PubMed ID: 8208726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational design of proteins stereochemically optimized in size, stability, and folding speed.
    Joshi S; Rana S; Wangikar P; Durani S
    Biopolymers; 2006 Oct; 83(2):122-34. PubMed ID: 16683262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.