These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 26815308)

  • 21. Allosteric site variants affect GTP hydrolysis on Ras.
    Johnson CW; Fetics SK; Davis KP; Rodrigues JA; Mattos C
    Protein Sci; 2023 Oct; 32(10):e4767. PubMed ID: 37615343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Statistical mechanics of protein allostery: roles of backbone and side-chain structural fluctuations.
    Itoh K; Sasai M
    J Chem Phys; 2011 Mar; 134(12):125102. PubMed ID: 21456702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic analysis by fluorescence of the interaction between Ras and the catalytic domain of the guanine nucleotide exchange factor Cdc25Mm.
    Lenzen C; Cool RH; Prinz H; Kuhlmann J; Wittinghofer A
    Biochemistry; 1998 May; 37(20):7420-30. PubMed ID: 9585556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superoxide anion radical modulates the activity of Ras and Ras-related GTPases by a radical-based mechanism similar to that of nitric oxide.
    Heo J; Campbell SL
    J Biol Chem; 2005 Apr; 280(13):12438-45. PubMed ID: 15684418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras.
    Scheffzek K; Lautwein A; Kabsch W; Ahmadian MR; Wittinghofer A
    Nature; 1996 Dec; 384(6609):591-6. PubMed ID: 8955277
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Common mechanisms of catalysis in small and heterotrimeric GTPases and their respective GAPs.
    Gerwert K; Mann D; Kötting C
    Biol Chem; 2017 May; 398(5-6):523-533. PubMed ID: 28245182
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solid-state 31P NMR spectroscopy of microcrystals of the Ras protein and its effector loop mutants: comparison between crystalline and solution state.
    Iuga A; Spoerner M; Kalbitzer HR; Brunner E
    J Mol Biol; 2004 Sep; 342(3):1033-40. PubMed ID: 15342254
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-time in vitro measurement of intrinsic and Ras GAP-mediated GTP hydrolysis.
    Shutes A; Der CJ
    Methods Enzymol; 2006; 407():9-22. PubMed ID: 16757310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glutathiolated Ras: characterization and implications for Ras activation.
    Hobbs GA; Bonini MG; Gunawardena HP; Chen X; Campbell SL
    Free Radic Biol Med; 2013 Apr; 57():221-9. PubMed ID: 23123410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of the GTP-binding/GTPase cycle of Cdc42Hs using extrinsic reporter group fluorescence.
    Nomanbhoy TK; Leonard DA; Manor D; Cerione RA
    Biochemistry; 1996 Apr; 35(14):4602-8. PubMed ID: 8605211
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Allosteric KRas4B Can Modulate SOS1 Fast and Slow Ras Activation Cycles.
    Liao TJ; Jang H; Fushman D; Nussinov R
    Biophys J; 2018 Aug; 115(4):629-641. PubMed ID: 30097175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The small GTPases Ras and Rheb studied by multidimensional NMR spectroscopy: structure and function.
    Schöpel M; Potheraveedu VN; Al-Harthy T; Abdel-Jalil R; Heumann R; Stoll R
    Biol Chem; 2017 May; 398(5-6):577-588. PubMed ID: 28475102
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-Throughput Dual Screening Method for Ras Activities and Inhibitors.
    Kopra K; van Adrichem AJ; Salo-Ahen OMH; Peltonen J; Wennerberg K; Härmä H
    Anal Chem; 2017 Apr; 89(8):4508-4516. PubMed ID: 28318223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural and functional analysis of a mutant Ras protein that is insensitive to nitric oxide activation.
    Mott HR; Carpenter JW; Campbell SL
    Biochemistry; 1997 Mar; 36(12):3640-4. PubMed ID: 9132016
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatiotemporal Imaging of Small GTPase Activity Using Conformational Sensors for GTPase Activity (COSGA).
    Wu YW
    Methods Mol Biol; 2021; 2262():259-267. PubMed ID: 33977482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of ADP-ribosylation factor and SAR1 in vesicular trafficking in plants.
    Memon AR
    Biochim Biophys Acta; 2004 Jul; 1664(1):9-30. PubMed ID: 15238254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Signal transduction via Ras.
    Wittinghofer A
    Biol Chem; 1998; 379(8-9):933-7. PubMed ID: 9792425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Guanine nucleotide exchange factors operate by a simple allosteric competitive mechanism.
    Guo Z; Ahmadian MR; Goody RS
    Biochemistry; 2005 Nov; 44(47):15423-9. PubMed ID: 16300389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Allostery and dynamics in small G proteins.
    Mott HR; Owen D
    Biochem Soc Trans; 2018 Oct; 46(5):1333-1343. PubMed ID: 30301845
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RAS ubiquitylation modulates effector interactions.
    Thurman R; Siraliev-Perez E; Campbell SL
    Small GTPases; 2020 May; 11(3):180-185. PubMed ID: 29185849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.