BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 26815368)

  • 1. Comparison of shear wave velocities on ultrasound elastography between different machines, transducers, and acquisition depths: a phantom study.
    Shin HJ; Kim MJ; Kim HY; Roh YH; Lee MJ
    Eur Radiol; 2016 Oct; 26(10):3361-7. PubMed ID: 26815368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance evaluation of commercial and non-commercial shear wave elastography implementations for vascular applications.
    Pruijssen JT; Schreuder FHBM; Wilbers J; Kaanders JHAM; de Korte CL; Hansen HHG
    Ultrasonics; 2024 May; 140():107312. PubMed ID: 38599075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion effects on the measurement of stiffness on ultrasound shear wave elastography: a moving liver fibrosis phantom study.
    Shin HJ; Kim MJ; Yoon CS; Lee K; Lee KS; Park JC; Lee MJ; Yoon H
    Med Ultrason; 2018 Feb; 1(1):14-20. PubMed ID: 29400362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring shear-wave speed with point shear-wave elastography and MR elastography: a phantom study.
    Kishimoto R; Suga M; Koyama A; Omatsu T; Tachibana Y; Ebner DK; Obata T
    BMJ Open; 2017 Jan; 7(1):e013925. PubMed ID: 28057657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variability of shear wave velocity using different frequencies in acoustic radiation force impulse (ARFI) elastography: a phantom and normal liver study.
    Chang S; Kim MJ; Kim J; Lee MJ
    Ultraschall Med; 2013 Jun; 34(3):260-5. PubMed ID: 23023455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superficial ultrasound shear wave speed measurements in soft and hard elasticity phantoms: repeatability and reproducibility using two ultrasound systems.
    Dillman JR; Chen S; Davenport MS; Zhao H; Urban MW; Song P; Watcharotone K; Carson PL
    Pediatr Radiol; 2015 Mar; 45(3):376-85. PubMed ID: 25249389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical acceptance testing and scanner comparison of ultrasound shear wave elastography.
    Long Z; Tradup DJ; Song P; Stekel SF; Chen S; Glazebrook KN; Hangiandreou NJ
    J Appl Clin Med Phys; 2018 May; 19(3):336-342. PubMed ID: 29542277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
    Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C
    Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reproducibility of shear wave elastography among operators, machines, and probes in an elasticity phantom.
    Alrashed AI; Alfuraih AM
    Ultrasonography; 2021 Jan; 40(1):158-166. PubMed ID: 32660213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy and precision of ultrasound shear wave elasticity measurements according to target elasticity and acquisition depth: A phantom study.
    Suh CH; Yoon HM; Jung SC; Choi YJ
    PLoS One; 2019; 14(7):e0219621. PubMed ID: 31295308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variability of Transrectal Shear Wave Elastography in a Phantom Model.
    Lee J; Yoon SK; Cho JH; Kwon HJ; Kim DW; Lee JW
    J Korean Soc Radiol; 2023 Sep; 84(5):1110-1122. PubMed ID: 37869125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal Acquisition Number for Hepatic Shear Wave Velocity Measurements in Children.
    Shin HJ; Kim MJ; Kim HY; Roh YH; Lee MJ
    PLoS One; 2016; 11(12):e0168758. PubMed ID: 28002480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phantom experiment and clinical utility of quantitative shear wave elastography for differentiating thyroid nodules.
    Fukuhara T; Matsuda E; Fujiwara K; Tanimura C; Izawa S; Kataoka H; Kitano H
    Endocr J; 2014; 61(6):615-21. PubMed ID: 24717719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Elastography Phantom Prototype for Assessment of Ultrasound Elastography Imaging Performance.
    Al-Mutairi FF; Chung EM; Moran CM; Ramnarine KV
    Ultrasound Med Biol; 2021 Sep; 47(9):2749-2758. PubMed ID: 34144833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Hand Tendons Through High-Frequency Ultrasound Elastography.
    Chen PY; Yang TH; Kuo LC; Shih CC; Huang CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jan; 67(1):37-48. PubMed ID: 31478846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Color Doppler shear wave elastography using commercial ultrasound machine with compensated transducer scanning delay.
    Hermawan N; Ishii T; Saijo Y
    J Med Ultrason (2001); 2022 Apr; 49(2):163-173. PubMed ID: 35229246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography.
    Nguyen MM; Zhou S; Robert JL; Shamdasani V; Xie H
    Ultrasound Med Biol; 2014 Jan; 40(1):168-76. PubMed ID: 24139915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of two--dimensional ultrasound shear wave elastography: reference values of normal liver stiffness in children.
    Galina P; Alexopoulou E; Zellos A; Grigoraki V; Siahanidou T; Kelekis NL; Zarifi M
    Pediatr Radiol; 2019 Jan; 49(1):91-98. PubMed ID: 30267166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the Effect of Tissue Compression on the Results of Shear Wave Elastography Measurements.
    Vachutka J; Sedlackova Z; Furst T; Herman M; Herman J; Salzman R; Dolezal L
    Ultrason Imaging; 2018 Nov; 40(6):380-393. PubMed ID: 30101677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of influencing factors of shear wave elastography of the superficial tissue: A phantom study.
    Chen Q; Shi B; Zheng Y; Hu X
    Front Med (Lausanne); 2022; 9():943844. PubMed ID: 36004380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.