These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 26815729)

  • 1. Lotus japonicus plants of the Gifu B-129 ecotype subjected to alkaline stress improve their Fe(2+) bio-availability through inoculation with Pantoea eucalypti M91.
    Campestre MP; Castagno LN; Estrella MJ; Ruiz OA
    J Plant Physiol; 2016 Mar; 192():47-55. PubMed ID: 26815729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interspecific hybridization and inoculation with Pantoea eucalypti improve forage performance of Lotus crop species under alkaline stress.
    Campestre MP; Antonelli CJ; Castagno NL; Maguire VG; Ruiz OA
    Plant Biol (Stuttg); 2024 Mar; 26(2):245-256. PubMed ID: 38196283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The alkaline tolerance in Lotus japonicus is associated with mechanisms of iron acquisition and modification of the architectural pattern of the root.
    Campestre MP; Antonelli C; Calzadilla PI; Maiale SJ; Rodríguez AA; Ruiz OA
    J Plant Physiol; 2016 Nov; 206():40-48. PubMed ID: 27688092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus Ecotypes Gifu B-129 and Miyakojima MG-20: transcriptomic profiling and physiological characterization.
    Babuin MF; Campestre MP; Rocco R; Bordenave CD; Escaray FJ; Antonelli C; Calzadilla P; Gárriz A; Serna E; Carrasco P; Ruiz OA; Menendez AB
    PLoS One; 2014; 9(5):e97106. PubMed ID: 24835559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defense responses in two ecotypes of Lotus japonicus against non-pathogenic Pseudomonas syringae.
    Bordenave CD; Escaray FJ; Menendez AB; Serna E; Carrasco P; Ruiz OA; Gárriz A
    PLoS One; 2013; 8(12):e83199. PubMed ID: 24349460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lotus japonicus: a new model to study root-parasitic nematodes.
    Lohar DP; Bird DM
    Plant Cell Physiol; 2003 Nov; 44(11):1176-84. PubMed ID: 14634154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of halotolerant Bacillus amyloliquefaciens RHF6 as a bio-based strategy for alleviating salinity stress in Lotus japonicus cv Gifu.
    Castaldi S; Valkov VT; Ricca E; Chiurazzi M; Isticato R
    Microbiol Res; 2023 Mar; 268():127274. PubMed ID: 36527786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vestitol as a chemical barrier against intrusion of parasitic plant Striga hermonthica into Lotus japonicus roots.
    Ueda H; Sugimoto Y
    Biosci Biotechnol Biochem; 2010; 74(8):1662-7. PubMed ID: 20699571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A set of Lotus japonicus Gifu x Lotus burttii recombinant inbred lines facilitates map-based cloning and QTL mapping.
    Sandal N; Jin H; Rodriguez-Navarro DN; Temprano F; Cvitanich C; Brachmann A; Sato S; Kawaguchi M; Tabata S; Parniske M; Ruiz-Sainz JE; Andersen SU; Stougaard J
    DNA Res; 2012; 19(4):317-23. PubMed ID: 22619310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two CLE genes are induced by phosphate in roots of Lotus japonicus.
    Funayama-Noguchi S; Noguchi K; Yoshida C; Kawaguchi M
    J Plant Res; 2011 Jan; 124(1):155-63. PubMed ID: 20428922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactions of Lotus japonicus ecotypes and mutants to root parasitic plants.
    Kubo M; Ueda H; Park P; Kawaguchi M; Sugimoto Y
    J Plant Physiol; 2009 Mar; 166(4):353-62. PubMed ID: 18760498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of differentially expressed genes potentially involved in the tolerance of Lotus tenuis to long-term alkaline stress.
    Paz RC; Rocco RA; Jiménez-Bremont JF; Rodríguez-Kessler M; Becerra-Flora A; Menéndez AB; Ruíz OA
    Plant Physiol Biochem; 2014 Sep; 82():279-88. PubMed ID: 25025825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lotus SHAGGY-like kinase 1 is required to suppress nodulation in Lotus japonicus.
    Garagounis C; Tsikou D; Plitsi PK; Psarrakou IS; Avramidou M; Stedel C; Anagnostou M; Georgopoulou ME; Papadopoulou KK
    Plant J; 2019 Apr; 98(2):228-242. PubMed ID: 30570783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auxin distribution in Lotus japonicus during root nodule development.
    Pacios-Bras C; Schlaman HR; Boot K; Admiraal P; Langerak JM; Stougaard J; Spaink HP
    Plant Mol Biol; 2003 Aug; 52(6):1169-80. PubMed ID: 14682616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The increase of photosynthetic carbon assimilation as a mechanism of adaptation to low temperature in Lotus japonicus.
    Calzadilla PI; Vilas JM; Escaray FJ; Unrein F; Carrasco P; Ruiz OA
    Sci Rep; 2019 Jan; 9(1):863. PubMed ID: 30696867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medicago truncatula ecotypes A17 and R108 differed in their response to iron deficiency.
    Li G; Wang B; Tian Q; Wang T; Zhang WH
    J Plant Physiol; 2014 May; 171(8):639-47. PubMed ID: 24709157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus.
    Signorelli S; Corpas FJ; Borsani O; Barroso JB; Monza J
    Plant Sci; 2013 Mar; 201-202():137-46. PubMed ID: 23352412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of zinc uptake and translocation visualized with positron-emitting 65Zn tracer and analysis of transport-related gene expression in two Lotus japonicus accessions.
    Noda Y; Furukawa J; Suzui N; Yin YG; Matsuoka K; Kawachi N; Satoh S
    Ann Bot; 2022 Dec; 130(6):799-810. PubMed ID: 35948001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Lotus japonicus ndx gene family is involved in nodule function and maintenance.
    Grønlund M; Gustafsen C; Roussis A; Jensen D; Nielsen LP; Marcker KA; Jensen EO
    Plant Mol Biol; 2003 May; 52(2):303-16. PubMed ID: 12856938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of Pantoea ananatis from sugarcane and characterization of its potential for plant growth promotion.
    da Silva JF; Barbosa RR; de Souza AN; da Motta OV; Teixeira GN; Carvalho VS; de Souza AL; de Souza Filho GA
    Genet Mol Res; 2015 Nov; 14(4):15301-11. PubMed ID: 26634494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.