These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26816394)

  • 81. Systems biology: current status and challenges.
    Zupanic A; Bernstein HC; Heiland I
    Cell Mol Life Sci; 2020 Feb; 77(3):379-380. PubMed ID: 31932855
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Practical limits for reverse engineering of dynamical systems: a statistical analysis of sensitivity and parameter inferability in systems biology models.
    Erguler K; Stumpf MP
    Mol Biosyst; 2011 May; 7(5):1593-602. PubMed ID: 21380410
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A Bayesian approach to targeted experiment design.
    Vanlier J; Tiemann CA; Hilbers PA; van Riel NA
    Bioinformatics; 2012 Apr; 28(8):1136-42. PubMed ID: 22368245
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Scalable Inference of Ordinary Differential Equation Models of Biochemical Processes.
    Fröhlich F; Loos C; Hasenauer J
    Methods Mol Biol; 2019; 1883():385-422. PubMed ID: 30547409
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Understanding biochemical design principles with ensembles of canonical non-linear models.
    Bromig L; Kremling A; Marin-Sanguino A
    PLoS One; 2020; 15(4):e0230599. PubMed ID: 32353072
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Parameter estimation in systems biology models using spline approximation.
    Zhan C; Yeung LF
    BMC Syst Biol; 2011 Jan; 5():14. PubMed ID: 21255466
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Identification of parameter correlations for parameter estimation in dynamic biological models.
    Li P; Vu QD
    BMC Syst Biol; 2013 Sep; 7():91. PubMed ID: 24053643
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Inferring a nonlinear biochemical network model from a heterogeneous single-cell time course data.
    Shindo Y; Kondo Y; Sako Y
    Sci Rep; 2018 May; 8(1):6790. PubMed ID: 29717206
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Scalable nonlinear programming framework for parameter estimation in dynamic biological system models.
    Shin S; Venturelli OS; Zavala VM
    PLoS Comput Biol; 2019 Mar; 15(3):e1006828. PubMed ID: 30908479
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Construction of a computable cell proliferation network focused on non-diseased lung cells.
    Westra JW; Schlage WK; Frushour BP; Gebel S; Catlett NL; Han W; Eddy SF; Hengstermann A; Matthews AL; Mathis C; Lichtner RB; Poussin C; Talikka M; Veljkovic E; Van Hooser AA; Wong B; Maria MJ; Peitsch MC; Deehan R; Hoeng J
    BMC Syst Biol; 2011 Jul; 5():105. PubMed ID: 21722388
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Inference for Stochastic Chemical Kinetics Using Moment Equations and System Size Expansion.
    Fröhlich F; Thomas P; Kazeroonian A; Theis FJ; Grima R; Hasenauer J
    PLoS Comput Biol; 2016 Jul; 12(7):e1005030. PubMed ID: 27447730
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Moment-Based Parameter Estimation for Stochastic Reaction Networks in Equilibrium.
    Backenkohler M; Bortolussi L; Wolf V
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1180-1192. PubMed ID: 29990108
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Generalized method of moments for estimating parameters of stochastic reaction networks.
    Lück A; Wolf V
    BMC Syst Biol; 2016 Oct; 10(1):98. PubMed ID: 27769280
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Extensions of ℓ
    Dolejsch P; Hass H; Timmer J
    BMC Bioinformatics; 2019 Jul; 20(1):395. PubMed ID: 31311516
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Identifying latent dynamic components in biological systems.
    Kondofersky I; Fuchs C; Theis FJ
    IET Syst Biol; 2015 Oct; 9(5):193-203. PubMed ID: 26405143
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Reverse engineering of logic-based differential equation models using a mixed-integer dynamic optimization approach.
    Henriques D; Rocha M; Saez-Rodriguez J; Banga JR
    Bioinformatics; 2015 Sep; 31(18):2999-3007. PubMed ID: 26002881
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments.
    van Riel NA
    Brief Bioinform; 2006 Dec; 7(4):364-74. PubMed ID: 17107967
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A Promising Method for Calculating True Steady-State Metabolite Concentrations in Large-Scale Metabolic Reaction Network Models.
    Miyawaki-Kuwakado A; Komori S; Shiraishi F
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):27-36. PubMed ID: 30004883
    [TBL] [Abstract][Full Text] [Related]  

  • 99. CRNreals: a toolbox for distinguishability and identifiability analysis of biochemical reaction networks.
    Szederkényi G; Banga JR; Alonso AA
    Bioinformatics; 2012 Jun; 28(11):1549-50. PubMed ID: 22492646
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Exploiting network topology for large-scale inference of nonlinear reaction models.
    Galagali N; Marzouk YM
    J R Soc Interface; 2019 Mar; 16(152):20180766. PubMed ID: 30862281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.