BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26816529)

  • 1. Acceleration of biodetoxification on dilute acid pretreated lignocellulose feedstock by aeration and the consequent ethanol fermentation evaluation.
    He Y; Zhang J; Bao J
    Biotechnol Biofuels; 2016; 9():19. PubMed ID: 26816529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation.
    Zhang J; Zhu Z; Wang X; Wang N; Wang W; Bao J
    Biotechnol Biofuels; 2010 Nov; 3():26. PubMed ID: 21092158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional analysis of Amorphotheca resinae ZN1 on biological degradation of furfural and 5-hydroxymethylfurfural derived from lignocellulose pretreatment.
    Wang X; Gao Q; Bao J
    Biotechnol Biofuels; 2015; 8():136. PubMed ID: 26346604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of biodegradation performance of furfural and 5-hydroxymethylfurfural by Amorphotheca resinae ZN1.
    Ran H; Zhang J; Gao Q; Lin Z; Bao J
    Biotechnol Biofuels; 2014 Apr; 7(1):51. PubMed ID: 24708699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tolerance response and metabolism of acetic acid by biodetoxification fungus Amorphotheca resinae ZN1.
    Gao X; Gao Q; Bao J
    J Biotechnol; 2018 Jun; 275():31-39. PubMed ID: 29601849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterozygous diploid structure of
    Yi X; Gao Q; Zhang L; Wang X; He Y; Hu F; Zhang J; Zou G; Yang S; Zhou Z; Bao J
    Biotechnol Biofuels; 2019; 12():126. PubMed ID: 31139256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodetoxification of Phenolic Inhibitors from Lignocellulose Pretreatment using
    Xie Y; Hu Q; Feng G; Jiang X; Hu J; He M; Hu G; Zhao S; Liang Y; Ruan Z; Peng N
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30322101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dry biorefining maximizes the potentials of simultaneous saccharification and co-fermentation for cellulosic ethanol production.
    Liu G; Zhang Q; Li H; Qureshi AS; Zhang J; Bao X; Bao J
    Biotechnol Bioeng; 2018 Jan; 115(1):60-69. PubMed ID: 28865124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous and rate-coordinated conversion of lignocellulose derived glucose, xylose, arabinose, mannose, and galactose into D-lactic acid production facilitates D-lactide synthesis.
    He N; Chen M; Qiu Z; Fang C; Lidén G; Liu X; Zhang B; Bao J
    Bioresour Technol; 2023 Jun; 377():128950. PubMed ID: 36963700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Furfural degradation by filamentous fungus Amorphotheca resinae ZN1].
    Wang X; Zhang J; Xin X; Bao J
    Sheng Wu Gong Cheng Xue Bao; 2012 Sep; 28(9):1070-9. PubMed ID: 23289309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Process strategy for ethanol production from lignocellulose feedstock under extremely low water usage and high solids loading conditions].
    Zhang J; Chu D; Yu Z; Zhang X; Deng H; Wang X; Zhu Z; Zhang H; Dai G; Bao J
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):950-9. PubMed ID: 20954396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Re-examination of dilute acid hydrolysis of lignocellulose for production of cellulosic ethanol after de-bottlenecking the inhibitor barrier.
    Zhang B; Wu L; Wang Y; Li J; Zhan B; Bao J
    J Biotechnol; 2022 Jul; 353():36-43. PubMed ID: 35597330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The advanced performance of microbial consortium for simultaneous utilization of glucose and xylose to produce lactic acid directly from dilute sulfuric acid pretreated corn stover.
    Sun Y; Li X; Wu L; Li Y; Li F; Xiu Z; Tong Y
    Biotechnol Biofuels; 2021 Dec; 14(1):233. PubMed ID: 34876182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic l-lactide synthesis from lignocellulose biomass by biorefining with complete inhibitor removal and highly simultaneous sugars assimilation.
    He N; Jia J; Qiu Z; Fang C; Lidén G; Liu X; Bao J
    Biotechnol Bioeng; 2022 Jul; 119(7):1903-1915. PubMed ID: 35274740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering wild-type robust Pediococcus acidilactici strain for high titer L- and D-lactic acid production from corn stover feedstock.
    Yi X; Zhang P; Sun J; Tu Y; Gao Q; Zhang J; Bao J
    J Biotechnol; 2016 Jan; 217():112-21. PubMed ID: 26616423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated bioethanol production from mixtures of corn and corn stover.
    Chen S; Xu Z; Li X; Yu J; Cai M; Jin M
    Bioresour Technol; 2018 Jun; 258():18-25. PubMed ID: 29518687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constructing xylose-assimilating pathways in Pediococcus acidilactici for high titer d-lactic acid fermentation from corn stover feedstock.
    Qiu Z; Gao Q; Bao J
    Bioresour Technol; 2017 Dec; 245(Pt B):1369-1376. PubMed ID: 28601396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long term storage of dilute acid pretreated corn stover feedstock and ethanol fermentability evaluation.
    Zhang J; Shao S; Bao J
    Bioresour Technol; 2016 Feb; 201():355-9. PubMed ID: 26639616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High ethanol fermentation performance of the dry dilute acid pretreated corn stover by an evolutionarily adapted Saccharomyces cerevisiae strain.
    Qureshi AS; Zhang J; Bao J
    Bioresour Technol; 2015; 189():399-404. PubMed ID: 25930238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentative production of high titer citric acid from corn stover feedstock after dry dilute acid pretreatment and biodetoxification.
    Zhou PP; Meng J; Bao J
    Bioresour Technol; 2017 Jan; 224():563-572. PubMed ID: 27913168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.