BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26816530)

  • 1. Effects of lignin and surfactant on adsorption and hydrolysis of cellulases on cellulose.
    Li Y; Sun Z; Ge X; Zhang J
    Biotechnol Biofuels; 2016; 9():20. PubMed ID: 26816530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.
    Yang B; Wyman CE
    Biotechnol Bioeng; 2006 Jul; 94(4):611-7. PubMed ID: 16673419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of additives on adsorption and desorption behavior of xylanase on acid-insoluble lignin from corn stover and wheat straw.
    Li Y; Ge X; Sun Z; Zhang J
    Bioresour Technol; 2015 Jun; 186():316-320. PubMed ID: 25818260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced xylanase performance in the hydrolysis of lignocellulosic materials by surfactants and non-catalytic protein.
    Ge X; Sun Z; Xin D; Zhang J
    Appl Biochem Biotechnol; 2014 Feb; 172(4):2106-18. PubMed ID: 24338209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the action of Tween 20 non-ionic surfactant during enzymatic hydrolysis of lignocellulose: Pretreatment, hydrolysis conditions and lignin structure.
    Chen YA; Zhou Y; Qin Y; Liu D; Zhao X
    Bioresour Technol; 2018 Dec; 269():329-338. PubMed ID: 30195225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolyzability of xylan after adsorption on cellulose: Exploration of xylan limitation on enzymatic hydrolysis of cellulose.
    Wang X; Li K; Yang M; Zhang J
    Carbohydr Polym; 2016 Sep; 148():362-70. PubMed ID: 27185150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments.
    Kumar R; Wyman CE
    Biotechnol Bioeng; 2009 Jun; 103(2):252-67. PubMed ID: 19195015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring why sodium lignosulfonate influenced enzymatic hydrolysis efficiency of cellulose from the perspective of substrate-enzyme adsorption.
    Zheng W; Lan T; Li H; Yue G; Zhou H
    Biotechnol Biofuels; 2020; 13():19. PubMed ID: 32015757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Nonionic Surfactants on Dispersion and Polar Interactions in the Adsorption of Cellulases onto Lignin.
    Jiang F; Qian C; Esker AR; Roman M
    J Phys Chem B; 2017 Oct; 121(41):9607-9620. PubMed ID: 28926703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption and mechanism of cellulase enzymes onto lignin isolated from corn stover pretreated with liquid hot water.
    Lu X; Zheng X; Li X; Zhao J
    Biotechnol Biofuels; 2016; 9():118. PubMed ID: 27274766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin.
    Nakagame S; Chandra RP; Kadla JF; Saddler JN
    Biotechnol Bioeng; 2011 Mar; 108(3):538-48. PubMed ID: 21246506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignin extracted by γ-valerolactone/water from corn stover improves cellulose enzymatic hydrolysis.
    Jia L; Qin Y; Wang J; Zhang J
    Bioresour Technol; 2020 Apr; 302():122901. PubMed ID: 32033842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of Clostridium thermocellum cellulases onto pretreated mixed hardwood, avicel, and lignin.
    Bernardez TD; Lyford K; Hogsett DA; Lynd LR
    Biotechnol Bioeng; 1993 Sep; 42(7):899-907. PubMed ID: 18613138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alleviating Nonproductive Adsorption of Lignin on CBM through the Addition of Cationic Additives for Lignocellulosic Hydrolysis.
    Han L; Jiang B; Wang W; Wang G; Tan Y; Niu K; Fang X
    ACS Appl Bio Mater; 2022 May; 5(5):2253-2261. PubMed ID: 35404566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates.
    Tu M; Chandra RP; Saddler JN
    Biotechnol Prog; 2007; 23(2):398-406. PubMed ID: 17378581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-productive celluase binding onto deep eutectic solvent (DES) extracted lignin from willow and corn stover with inhibitory effects on enzymatic hydrolysis of cellulose.
    Song Y; Chandra RP; Zhang X; Saddler JN
    Carbohydr Polym; 2020 Dec; 250():116956. PubMed ID: 33049860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recycling cellulases by pH-triggered adsorption-desorption during the enzymatic hydrolysis of lignocellulosic biomass.
    Shang Y; Su R; Huang R; Yang Y; Qi W; Li Q; He Z
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5765-74. PubMed ID: 24752845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of surfactants on pretreatment of corn stover.
    Qing Q; Yang B; Wyman CE
    Bioresour Technol; 2010 Aug; 101(15):5941-51. PubMed ID: 20304637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies.
    Kumar R; Wyman CE
    Biotechnol Prog; 2009; 25(3):807-19. PubMed ID: 19504581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving enzymatic efficiency of β-glucosidases in cellulase system by altering its binding behavior to the insoluble substrate during bioconversion of lignocellulose.
    Lu X; Li X; Zhao J
    Bioresour Technol; 2024 Jan; 391(Pt A):129974. PubMed ID: 37939741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.