BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 26816642)

  • 1. Bridging the lesion-engineering a permissive substrate for nerve regeneration.
    Pires LR; Pêgo AP
    Regen Biomater; 2015 Sep; 2(3):203-14. PubMed ID: 26816642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury.
    Lv B; Zhang X; Yuan J; Chen Y; Ding H; Cao X; Huang A
    Stem Cell Res Ther; 2021 Jan; 12(1):36. PubMed ID: 33413653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defining Spatial Relationships Between Spinal Cord Axons and Blood Vessels in Hydrogel Scaffolds.
    Siddiqui AM; Oswald D; Papamichalopoulos S; Kelly D; Summer P; Polzin M; Hakim J; Schmeichel AM; Chen B; Yaszemski MJ; Windebank AJ; Madigan NN
    Tissue Eng Part A; 2021 Jun; 27(11-12):648-664. PubMed ID: 33764164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination therapy of stem cell derived neural progenitors and drug delivery of anti-inhibitory molecules for spinal cord injury.
    Wilems TS; Pardieck J; Iyer N; Sakiyama-Elbert SE
    Acta Biomater; 2015 Dec; 28():23-32. PubMed ID: 26384702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair.
    Serafin A; Rubio MC; Carsi M; Ortiz-Serna P; Sanchis MJ; Garg AK; Oliveira JM; Koffler J; Collins MN
    Biomater Res; 2022 Nov; 26(1):63. PubMed ID: 36414973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Multichannel Poly(Propylene Fumarate)-Collagen Scaffold with Collagen-Binding Neurotrophic Factor 3 Promotes Neural Regeneration After Transected Spinal Cord Injury.
    Chen X; Zhao Y; Li X; Xiao Z; Yao Y; Chu Y; Farkas B; Romano I; Brandi F; Dai J
    Adv Healthc Mater; 2018 Jul; 7(14):e1800315. PubMed ID: 29920990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polycaprolactone/polysialic acid hybrid, multifunctional nanofiber scaffolds for treatment of spinal cord injury.
    Zhang S; Wang XJ; Li WS; Xu XL; Hu JB; Kang XQ; Qi J; Ying XY; You J; Du YZ
    Acta Biomater; 2018 Sep; 77():15-27. PubMed ID: 30126591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts.
    Zukor KA; Kent DT; Odelberg SJ
    Neural Dev; 2011 Jan; 6():1. PubMed ID: 21205291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trimethylene carbonate-caprolactone conduit with poly-p-dioxanone microfilaments to promote regeneration after spinal cord injury.
    Novikova LN; Kolar MK; Kingham PJ; Ullrich A; Oberhoffner S; Renardy M; Doser M; Müller E; Wiberg M; Novikov LN
    Acta Biomater; 2018 Jan; 66():177-191. PubMed ID: 29174588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation.
    Li X; Liu D; Xiao Z; Zhao Y; Han S; Chen B; Dai J
    Biomaterials; 2019 Mar; 197():20-31. PubMed ID: 30639547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds.
    Gros T; Sakamoto JS; Blesch A; Havton LA; Tuszynski MH
    Biomaterials; 2010 Sep; 31(26):6719-29. PubMed ID: 20619785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomaterial scaffolds used for the regeneration of spinal cord injury (SCI).
    Kim M; Park SR; Choi BH
    Histol Histopathol; 2014 Nov; 29(11):1395-408. PubMed ID: 24831814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury.
    Liu S; Sandner B; Schackel T; Nicholson L; Chtarto A; Tenenbaum L; Puttagunta R; Müller R; Weidner N; Blesch A
    Acta Biomater; 2017 Sep; 60():167-180. PubMed ID: 28735026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of decellularized spinal scaffolds on spinal axon regeneration in rats.
    Zhu J; Lu Y; Yu F; Zhou L; Shi J; Chen Q; Ding W; Wen X; Ding YQ; Mei J; Wang J
    J Biomed Mater Res A; 2018 Mar; 106(3):698-705. PubMed ID: 28986946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration of Spinal Cord Connectivity Through Stem Cell Transplantation and Biomaterial Scaffolds.
    Katoh H; Yokota K; Fehlings MG
    Front Cell Neurosci; 2019; 13():248. PubMed ID: 31244609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Devising micro/nano-architectures in multi-channel nerve conduits towards a pro-regenerative matrix for the repair of spinal cord injury.
    Sun X; Bai Y; Zhai H; Liu S; Zhang C; Xu Y; Zou J; Wang T; Chen S; Zhu Q; Liu X; Mao H; Quan D
    Acta Biomater; 2019 Mar; 86():194-206. PubMed ID: 30586646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Biomaterials engineering strategies for spinal cord regeneration: state of the art].
    Lis A; Szarek D; Laska J
    Polim Med; 2013; 43(2):59-80. PubMed ID: 24044287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord.
    Günther MI; Weidner N; Müller R; Blesch A
    Acta Biomater; 2015 Nov; 27():140-150. PubMed ID: 26348141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in the Regenerative Approaches for Traumatic Spinal Cord Injury: Materials Perspective.
    Abbas WA; Ibrahim ME; El-Naggar M; Abass WA; Abdullah IH; Awad BI; Allam NK
    ACS Biomater Sci Eng; 2020 Dec; 6(12):6490-6509. PubMed ID: 33320628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current Concepts of Biomaterial Scaffolds and Regenerative Therapy for Spinal Cord Injury.
    Suzuki H; Imajo Y; Funaba M; Ikeda H; Nishida N; Sakai T
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.