These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
485 related articles for article (PubMed ID: 26817499)
1. In Situ "Clickable" Zwitterionic Starch-Based Hydrogel for 3D Cell Encapsulation. Dong D; Li J; Cui M; Wang J; Zhou Y; Luo L; Wei Y; Ye L; Sun H; Yao F ACS Appl Mater Interfaces; 2016 Feb; 8(7):4442-55. PubMed ID: 26817499 [TBL] [Abstract][Full Text] [Related]
2. Zwitterionic starch-based hydrogel for the expansion and "stemness" maintenance of brown adipose derived stem cells. Dong D; Hao T; Wang C; Zhang Y; Qin Z; Yang B; Fang W; Ye L; Yao F; Li J Biomaterials; 2018 Mar; 157():149-160. PubMed ID: 29272722 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation. Cao Y; Lee BH; Peled HB; Venkatraman SS J Biomed Mater Res A; 2016 Oct; 104(10):2401-11. PubMed ID: 27170015 [TBL] [Abstract][Full Text] [Related]
4. Physical Cross-Linking Starch-Based Zwitterionic Hydrogel Exhibiting Excellent Biocompatibility, Protein Resistance, and Biodegradability. Ye L; Zhang Y; Wang Q; Zhou X; Yang B; Ji F; Dong D; Gao L; Cui Y; Yao F ACS Appl Mater Interfaces; 2016 Jun; 8(24):15710-23. PubMed ID: 27249052 [TBL] [Abstract][Full Text] [Related]
5. Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture. Hao Y; Shih H; Muňoz Z; Kemp A; Lin CC Acta Biomater; 2014 Jan; 10(1):104-14. PubMed ID: 24021231 [TBL] [Abstract][Full Text] [Related]
6. Cytocompatible and non-fouling zwitterionic hyaluronic acid-based hydrogels using thiol-ene "click" chemistry for cell encapsulation. Zhang Y; Liu S; Li T; Zhang L; Azhar U; Ma J; Zhai C; Zong C; Zhang S Carbohydr Polym; 2020 May; 236():116021. PubMed ID: 32172841 [TBL] [Abstract][Full Text] [Related]
7. "One-step" preparation of thiol-ene clickable PEG-based thermoresponsive hyperbranched copolymer for in situ crosslinking hybrid hydrogel. Dong Y; Saeed AO; Hassan W; Keigher C; Zheng Y; Tai H; Pandit A; Wang W Macromol Rapid Commun; 2012 Jan; 33(2):120-6. PubMed ID: 22139810 [TBL] [Abstract][Full Text] [Related]
8. Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of PEG-based hyperbranched copolymer and hyaluronic acid. Hassan W; Dong Y; Wang W Stem Cell Res Ther; 2013 Mar; 4(2):32. PubMed ID: 23517589 [TBL] [Abstract][Full Text] [Related]
9. Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)-poly(ethylene glycol)-oligo(acryloyl carbonate) copolymer for functional cardiac regeneration. Xu G; Wang X; Deng C; Teng X; Suuronen EJ; Shen Z; Zhong Z Acta Biomater; 2015 Mar; 15():55-64. PubMed ID: 25545323 [TBL] [Abstract][Full Text] [Related]
10. Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation. Liu ZQ; Wei Z; Zhu XL; Huang GY; Xu F; Yang JH; Osada Y; Zrínyi M; Li JH; Chen YM Colloids Surf B Biointerfaces; 2015 Apr; 128():140-148. PubMed ID: 25744162 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and characterization of thiol-acrylate hydrogels using a base-catalyzed Michael addition for 3D cell culture applications. Khan AH; Cook JK; Wortmann WJ; Kersker ND; Rao A; Pojman JA; Melvin AT J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2294-2307. PubMed ID: 31961056 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional encapsulation of adult mouse cardiomyocytes in hydrogels with tunable stiffness. Crocini C; Walker CJ; Anseth KS; Leinwand LA Prog Biophys Mol Biol; 2020 Aug; 154():71-79. PubMed ID: 31122749 [TBL] [Abstract][Full Text] [Related]
13. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Lin CC; Raza A; Shih H Biomaterials; 2011 Dec; 32(36):9685-95. PubMed ID: 21924490 [TBL] [Abstract][Full Text] [Related]
14. Development of bioactive photocrosslinkable fibrous hydrogels. Stephens-Altus JS; Sundelacruz P; Rowland ML; West JL J Biomed Mater Res A; 2011 Aug; 98(2):167-76. PubMed ID: 21548066 [TBL] [Abstract][Full Text] [Related]
15. Instant Gelation System as Self-Healable and Printable 3D Cell Culture Bioink Based on Dynamic Covalent Chemistry. A S; Lyu J; Johnson M; Creagh-Flynn J; Zhou D; Lara-Sáez I; Xu Q; Tai H; Wang W ACS Appl Mater Interfaces; 2020 Sep; 12(35):38918-38924. PubMed ID: 32805952 [TBL] [Abstract][Full Text] [Related]
16. Differentiation, maturation, and collection of THP-1-derived dendritic cells based on a PEG hydrogel culture platform. Choi J; Ki CS Biotechnol Lett; 2024 Apr; 46(2):235-247. PubMed ID: 38231384 [TBL] [Abstract][Full Text] [Related]
17. Gelation Kinetics and Mechanical Properties of Thiol-Tetrazole Methylsulfone Hydrogels Designed for Cell Encapsulation. de Miguel-Jiménez A; Ebeling B; Paez JI; Fink-Straube C; Pearson S; Del Campo A Macromol Biosci; 2023 Feb; 23(2):e2200419. PubMed ID: 36457236 [TBL] [Abstract][Full Text] [Related]
18. PEG-based hydrogels as an in vitro encapsulation platform for testing controlled beta-cell microenvironments. Weber LM; He J; Bradley B; Haskins K; Anseth KS Acta Biomater; 2006 Jan; 2(1):1-8. PubMed ID: 16701853 [TBL] [Abstract][Full Text] [Related]