These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
485 related articles for article (PubMed ID: 26817499)
21. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Wang C; Tong X; Yang F Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441 [TBL] [Abstract][Full Text] [Related]
22. Enhancement of the adhesion of fibroblasts by peptide containing an Arg-Gly-Asp sequence with poly(ethylene glycol) into a thermo-reversible hydrogel as a synthetic extracellular matrix. Park KH; Na K; Chung HM Biotechnol Lett; 2005 Feb; 27(4):227-31. PubMed ID: 15742141 [TBL] [Abstract][Full Text] [Related]
23. Decoupled control of stiffness and permeability with a cell-encapsulating poly(ethylene glycol) dimethacrylate hydrogel. Cha C; Kim SY; Cao L; Kong H Biomaterials; 2010 Jun; 31(18):4864-71. PubMed ID: 20347136 [TBL] [Abstract][Full Text] [Related]
24. Synthesis and characterization of in situ chitosan-based hydrogel via grafting of carboxyethyl acrylate. Kim MS; Choi YJ; Noh I; Tae G J Biomed Mater Res A; 2007 Dec; 83(3):674-82. PubMed ID: 17530630 [TBL] [Abstract][Full Text] [Related]
25. Effect of macromer weight percent on neural cell growth in 2D and 3D nondegradable PEG hydrogel culture. Lampe KJ; Mooney RG; Bjugstad KB; Mahoney MJ J Biomed Mater Res A; 2010 Sep; 94(4):1162-71. PubMed ID: 20694983 [TBL] [Abstract][Full Text] [Related]
26. Mechanical confinement via a PEG/Collagen interpenetrating network inhibits behavior characteristic of malignant cells in the triple negative breast cancer cell line MDA.MB.231. Reynolds DS; Bougher KM; Letendre JH; Fitzgerald SF; Gisladottir UO; Grinstaff MW; Zaman MH Acta Biomater; 2018 Sep; 77():85-95. PubMed ID: 30030173 [TBL] [Abstract][Full Text] [Related]
27. The influence of matrix properties on growth and morphogenesis of human pancreatic ductal epithelial cells in 3D. Raza A; Ki CS; Lin CC Biomaterials; 2013 Jul; 34(21):5117-27. PubMed ID: 23602364 [TBL] [Abstract][Full Text] [Related]
28. Injectable in situ forming xylitol-PEG-based hydrogels for cell encapsulation and delivery. Selvam S; Pithapuram MV; Victor SP; Muthu J Colloids Surf B Biointerfaces; 2015 Feb; 126():35-43. PubMed ID: 25543981 [TBL] [Abstract][Full Text] [Related]
29. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Xu Q; A S; Gao Y; Guo L; Creagh-Flynn J; Zhou D; Greiser U; Dong Y; Wang F; Tai H; Liu W; Wang W; Wang W Acta Biomater; 2018 Jul; 75():63-74. PubMed ID: 29803782 [TBL] [Abstract][Full Text] [Related]
30. Thiol-ene-based biological/synthetic hybrid biomatrix for 3-D living cell culture. Xu K; Fu Y; Chung W; Zheng X; Cui Y; Hsu IC; Kao WJ Acta Biomater; 2012 Jul; 8(7):2504-16. PubMed ID: 22484717 [TBL] [Abstract][Full Text] [Related]
31. Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness. Keeney M; Onyiah S; Zhang Z; Tong X; Han LH; Yang F Biomaterials; 2013 Dec; 34(37):9657-65. PubMed ID: 24011715 [TBL] [Abstract][Full Text] [Related]
32. Development of a biostable replacement for PEGDA hydrogels. Browning MB; Cosgriff-Hernandez E Biomacromolecules; 2012 Mar; 13(3):779-86. PubMed ID: 22324325 [TBL] [Abstract][Full Text] [Related]
33. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol. Brink KS; Yang PJ; Temenoff JS Acta Biomater; 2009 Feb; 5(2):570-9. PubMed ID: 18948068 [TBL] [Abstract][Full Text] [Related]
34. Novel injectable biodegradable glycol chitosan-based hydrogels crosslinked by Michael-type addition reaction with oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) copolymers. Yu Y; Deng C; Meng F; Shi Q; Feijen J; Zhong Z J Biomed Mater Res A; 2011 Nov; 99(2):316-26. PubMed ID: 21887740 [TBL] [Abstract][Full Text] [Related]
35. Nanostructured PEG-based hydrogels with tunable physical properties for gene delivery to human mesenchymal stem cells. Li Y; Yang C; Khan M; Liu S; Hedrick JL; Yang YY; Ee PL Biomaterials; 2012 Sep; 33(27):6533-41. PubMed ID: 22704846 [TBL] [Abstract][Full Text] [Related]
36. A newly developed chemically crosslinked dextran-poly(ethylene glycol) hydrogel for cartilage tissue engineering. Jukes JM; van der Aa LJ; Hiemstra C; van Veen T; Dijkstra PJ; Zhong Z; Feijen J; van Blitterswijk CA; de Boer J Tissue Eng Part A; 2010 Feb; 16(2):565-73. PubMed ID: 19737051 [TBL] [Abstract][Full Text] [Related]
37. Polyamidoamine dendrimer-PEG hydrogel and its mechanical property on differentiation of mesenchymal stem cells. Bi X; Maturavongsadit P; Tan Y; Watts M; Bi E; Kegley Z; Morton S; Lu L; Wang Q; Liang A Biomed Mater Eng; 2019; 30(1):111-123. PubMed ID: 30562893 [TBL] [Abstract][Full Text] [Related]
38. The three dimensional cues-integrated-biomaterial potentiates differentiation of human mesenchymal stem cells. Park MH; Subbiah R; Kwon MJ; Kim WJ; Kim SH; Park K; Lee K Carbohydr Polym; 2018 Dec; 202():488-496. PubMed ID: 30287027 [TBL] [Abstract][Full Text] [Related]
39. Soft PEG-Hydrogels with Independently Tunable Stiffness and RGDS-Content for Cell Adhesion Studies. M Jonker A; A Bode S; H Kusters A; van Hest JC; Löwik DW Macromol Biosci; 2015 Oct; 15(10):1338-47. PubMed ID: 26097013 [TBL] [Abstract][Full Text] [Related]
40. Cell encapsulation spatially alters crosslink density of poly(ethylene glycol) hydrogels formed from free-radical polymerizations. Chu S; Maples MM; Bryant SJ Acta Biomater; 2020 Jun; 109():37-50. PubMed ID: 32268243 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]